Faster Compact Diffie-Hellman: Endomorphisms on the *x*-line

Craig Costello, Huseyin Hisil and Benjamin Smith

EUROCRYPT 2014 Copenhagen, Denmark May 12, 2014

A software implementation of Diffie-Hellman key-exchange targeting 128-bit security:

- Fast: 148,000 cycles (Intel Core i7-3520M Ivy Bridge) for key_gen and shared_secret
- **Compact:** 256-bit keys (*purely x*-coordinates only)
- Constant-time: execution independent of input side-channel resistant

Software (in eBACS format) available at:

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

Endomorphisms

replace single scalar with half-sized double-scalars

The x-line

use x coordinates throughout, instead of (x, y) coordinates (and work on curve and twist simultaneously)

S Endomorphisms on the *x*-line

do both ...

Endomorphisms

The fundamental ECC operation: scalar multiplication

given: a scalar [m] and an elliptic curve point P compute: [m]P

Write the scalar in binary

$m = (1, 0, 1, \dots, 0, 0, 1)_2$

and double-and-add

• Or use another addition chain ...

What's an endomorphism?

In this talk, an endomorphism (on an elliptic curve $\mathcal E)$ is a map $\psi\colon \mathcal E\to \mathcal E$

- some (trivial) examples: multiplication-by-m map, $m \in \mathbb{Z}$ [-1], [2], [3], ..., [m]
- real-world example: curve used in bitcoin 🤒
 - $\mathcal{E}/\mathbb{F}_p: y^2 = x^3 + b \text{ with } p \equiv 1 \text{ mod } 3. \text{ Let } \zeta^3 = 1 \text{ for } \zeta \neq 1.$ If P = (x, y) on \mathcal{E} , so is $\psi(P) = (\zeta x, y)$
- Fact: $\psi(P) = [\lambda]P$ i.e. ψ 's a shortcut to $[\lambda]$

What's a useful endomorphism?

 ψ should be efficiently computable, and $[\lambda]$ should be large -

i.e. ψ should be much faster than $[\lambda]$ (e.g. 1 mul vs. 3000+ muls)

How to use an endomorphism, part I

Scalar multiplication (in the presence of an endomorphism):

given: a scalar [m] and two points P, $\psi(P)$ (order N) compute: $[m]P = [a]P + [b]\psi(P)$

- many possible (a, b) pairs find "short" one
- Use "zero decomposition lattice" \mathcal{L} : all pairs (c,d) such that $c+d\lambda\equiv 0 \mod N$
- Find $(v_1, v_2) \in \mathcal{L}$ close to (m, 0): $(a, b) = (m, 0) (v_1, v_2)$
- Short basis for $\mathcal{L}=\langle (N,0),(-\lambda,1)
 angle$ computed in advance, so

$$m \stackrel{\mathcal{L}}{\longrightarrow} (a, b)$$

very cheap: i.e. less than 10 integer muls to compute

How to use an endomorphism, part II

- Be.g.: 256-bit *m*'s decompose into \approx 128-bit *a*'s and *b*'s
- m = 100162175736570768564527594834550209124031802653885759009988599962436827164086

$\downarrow \mathcal{L}$

a = 99172541169956320218199372915391025671

 $b = {}_{224127230907715819133022922601979555751}$

• Multiexponentation to compute $[a]P + [b]\psi(P)$

Summary: (at least in this case...)

half the doublings...and fewer additions too!

The *x*-line

x–coordinate only arithmetic

Montgomery's formulas:

$$Bv^2 = x^3 + Ax^2 + x$$

$$x_{[2]T} = \text{DBL}(x_T, A)$$

$$x_{T+P} = \text{PSEUDOADD}(x_T, x_P, x_{T-P})$$

x-coordinate only arithmetic

Classical formulas: $y^2 = x^3 + ax + b$

$$x_{[2]T}, y_{[2]T} = DBL(x_T, y_T, a)$$
$$x_{T+P}, y_{T+P} = ADD(x_T, y_T, x_P, y_P)$$

Montgomery's formulas: $By^2 = x^3 + Ax^2 + x$

$$x_{[2]T} = DBL(x_T, A)$$

$$x_{T+P} = PSEUDOADD(x_T, x_P, x_{T-P})$$

- opposite y's give different x-coordinate than same-sign y's
- decide between them with difference x_{T-P}
- Differential additions: $x_{T+P} = PSEUDOADD(x_T, x_P, x_{T-P})$

Compact scalar multiplications on: \mathcal{E}/\mathbb{F}_q : $By^2 = x^3 + Ax^2 + x$ x([m]P) = LADDER(m, x(P), A)

- Now just \mathbb{F}_q values (hard ECDLP underneath)
- BUT only \approx half of $x \in \mathbb{F}_q$ give point on $By^2 = x^3 + Ax^2 + x$
- Other \approx half give point on twist \mathcal{E}' : $B'y^2 = x^3 + Ax^2 + x$
- Bernstein '01: LADDER(m, x, A) will give hard ECDLP for all $x \in \mathbb{F}_q$ if \mathcal{E} and \mathcal{E}' are both secure (i.e. same A for $\mathcal{E}, \mathcal{E}'$)

The picture

- All possible $x \in \mathbb{F}_q$ "partitioned" to \mathcal{E} or \mathcal{E}'
- But LADDER(m, x, A) doesn't distinguish: so users needn't
- Bernstein'06: curve25519 built on this notion

Endomorphisms on the *x*-line

We need a curve that:

- i. is defined over fast field
- ii. has a useful endomorphism
- iii. is twist-secure
 - (ii) and (iii): Gallant-Lambert-Vanstone (GLV) CRYPTO'01
 - (i) and (ii): Galbraith-Lin-Scott (GLS) EUROCRYPT'09

(i), (ii) and (iii): Benjamin Smith - ASIACRYPT'13 Fast families of elliptic curves from Q-curves

The curve: targeting 128-bit security level

• the field:

$$\mathbb{F}_{p^2} = \mathbb{F}_p(i), \ i^2 + 1 = 0 \ \text{and} \ p = 2^{127} - 1$$

• the curve (and twist): defined by $A \in \mathbb{F}_{p^2}$

$$\mathcal{E}: y^2 = x^3 + Ax^2 + x, \quad \mathcal{E}': (\frac{12}{A})y^2 = x^3 + Ax^2 + x$$

the group orders:

$$\#\mathcal{E} = 4N, \qquad \qquad \#\mathcal{E}' = 8N',$$

252-bit prime N and 251-bit prime N'

security properties:

MOV deg, disc(End(\mathcal{E})), $h(End(\mathcal{E}))$ – all huge ...

The (x-only) endomorphism ψ_x $\psi_x(x) = rac{A^p ((x-1)^2 + (A+2)x)^p}{-2Ax^p}$

2-dimensional differential addition chains

- Requirement: difference U V must be in chain before computing U + V
- One dimensional ladder: $m, x(P) \mapsto x([m]P)$
- We need two-dimensional version:

 $a, b, x(P), x(\psi(P)) \mapsto x([a]P + [b]\psi(P))$

• Three variants chosen from the literature ...

chain	by	# steps	ops per step	
PRAC	Montgomery	$pprox 0.9\ell$	pprox 1.6~ADD + 0.6~DBL	
	Azarderakhsh			
AK	& Karabina	$pprox 1.4\ell$	1 ADD + 1 DBL	
DJB	Bernstein	ℓ	2 ADD + 1 DBL	

Note: easy to force l = max{[log₂ a], [log₂ b]} to be of constant length for constant-time chains

Kickstarting addition chains

• All three chains require inputs x(P), $x(\psi(P))$, and one of

$$x((\psi \pm 1)(P))$$

i.e. can't add two points without their difference

Computing the initial difference:

$$(\psi \pm 1)_x(x) = f(x) + g(x) \cdot \frac{x^{(p+1)/2}}{x}$$

where f and g have low degree.

- Exponentiation to $(p+1)/2 = 2^{126} \longrightarrow 126$ squarings
- $(\psi \pm 1)_x$ not as fast as ψ_x , or other endomorphisms around, but it could be worse ...

Performance results (Ivy Bridge)

The routine

Input: scalar $m \in \mathbb{Z}$ and $x(P) \in \mathbb{F}_{p^2}$

 $1 a, b \leftarrow \text{DECOMPOSE}(m)$

2
$$x(\psi(P)), x((\psi-1)(P)) \leftarrow \text{ENDO}(x(P))$$

③ $x([m]P) \leftarrow CHAIN(x(P), x(\psi(P)), x((\psi - 1)(P)))$

Output: x([m]P)

CHAIN	dimension	uniform?	constant time?	cycles
LADDER	1	✓	\checkmark	159,000
DJB	2	1	\checkmark	148,000
AK	2	1	×	133,000
PRAC	2	×	×	109,000

Compare to curve25519 (✓ & ✓): 182,000 cycles

Variants / alternatives / spin-offs

- Slightly faster/simpler if choosing (*a*, *b*) at random (see paper)
- Faster key_gen in ephemeral Diffie-Hellman: Alice may want to exploit pre-computations on the public generator x(P):
 - precompute $x(\psi(P))$ and $x((\psi+1)P)$, or
 - Alice works on twisted Edwards form of ${\mathcal E}$ before pushing to x-line for Bob
- Genus 2 analogue still open: even more attractive on the Kummer surface

Full version

http://eprint.iacr.org/2013/692

C-and-assembly software implementation

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

Magma scripts

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/