Faster Compact Diffie-Hellman: Endomorphisms on the x-line

Craig Costello, Huseyin Hisil and Benjamin Smith

EUROCRYPT 2014
Copenhagen, Denmark
May 12, 2014

Microsoft ${ }^{*}$
Research

At a high level. . .

A software implementation of Diffie-Hellman key-exchange targeting 128-bit security:

- Fast: 148,000 cycles (Intel Core i7-3520M - Ivy Bridge) for key_gen and shared_secret
- Compact: 256-bit keys (purely x-coordinates only)
- Constant-time: execution independent of input -side-channel resistant

Software (in eBACS format) available at:

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz
(1) Endomorphisms
replace single scalar with half-sized double-scalars
(2) The x-line
use x coordinates throughout, instead of (x, y) coordinates (and work on curve and twist simultaneously)
(3) Endomorphisms on the x-line do both...

Endomorphisms

A generic scalar multiplication

The fundamental ECC operation: scalar multiplication

$$
\begin{array}{lc}
\text { given: } & \text { a scalar }[m] \text { and an elliptic curve point } P \\
\text { compute: } & {[\mathrm{m}] P}
\end{array}
$$

- Write the scalar in binary

$$
m=(1,0,1, \ldots, 0,0,1)_{2} \quad \begin{aligned}
& \text { and double-and-add }
\end{aligned}
$$

- Or use another addition chain...

Endomorphisms

What's an endomorphism?

In this talk, an endomorphism (on an elliptic curve \mathcal{E}) is a map

$$
\psi: \mathcal{E} \rightarrow \mathcal{E}
$$

- some (trivial) examples: multiplication-by-m map, $m \in \mathbb{Z}$

$$
[-1],[2],[3], \ldots,[m]
$$

- real-world example: curve used in bitcoin

$$
\begin{gathered}
\mathcal{E} / \mathbb{F}_{p}: y^{2}=x^{3}+b \text { with } p \equiv 1 \bmod 3 . \text { Let } \zeta^{3}=1 \text { for } \zeta \neq 1 . \\
\text { If } P=(x, y) \text { on } \mathcal{E}, \text { so is } \psi(P)=(\zeta x, y)
\end{gathered}
$$

- Fact:

$$
\psi(P)=[\lambda] P
$$

i.e. ψ 's a shortcut to $[\lambda]$

What's a useful endomorphism?

ψ should be efficiently computable, and [λ] should be large i.e. ψ should be much faster than $[\lambda]$ (e.g. 1 mul vs. $3000+$ muls)

How to use an endomorphism, part I

Scalar multiplication (in the presence of an endomorphism):

given: a scalar $[m]$ and two points $P, \psi(P)$ (order N) compute:

$$
[m] P=[a] P+[b] \psi(P)
$$

- many possible (a, b) pairs - find "short" one
- Use "zero decomposition lattice" \mathcal{L} : all pairs (c, d) such that

$$
c+d \lambda \equiv 0 \bmod N
$$

- Find $\left(v_{1}, v_{2}\right) \in \mathcal{L}$ close to $(m, 0):(a, b)=(m, 0)-\left(v_{1}, v_{2}\right)$
- Short basis for $\mathcal{L}=\langle(N, 0),(-\lambda, 1)\rangle$ computed in advance, so

$$
m \stackrel{\mathcal{L}}{\longrightarrow}(a, b)
$$

very cheap: i.e. less than 10 integer muls to compute

How to use an endomorphism, part II

- Be.g.: 256-bit m's decompose into ≈ 128-bit a's and b's
- $m=100162175736570768564527594834550209124031802653885759009988599962436827164086$

$$
\begin{aligned}
& \qquad \downarrow \mathcal{L} \\
& a=99172541169956320218199372915391025671 \\
& b=224127230907715819133022922601979555751
\end{aligned}
$$

- Multiexponentation to compute $[a] P+[b] \psi(P)$

$$
\begin{aligned}
& \begin{array}{ccccc}
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
{[P} & \psi(P) & P & 0 & |P+\psi(P)| \ldots
\end{array}
\end{aligned}
$$

Summary: (at least in this case...)

half the doublings. . . and fewer additions too!

The x-line

x-coordinate only arithmetic

Classical formulas: $\quad y^{2}=x^{3}+a x+b$

$$
\begin{aligned}
& x_{[2] T}, y_{[2] T}=\operatorname{DBL}\left(x_{T}, y_{T}, a\right) \\
& x_{T+P}, y_{T+P}=\operatorname{ADD}\left(x_{T}, y_{T}, x_{P}, y_{P}\right)
\end{aligned}
$$

Montgomery's formulas: $\quad B y^{2}=x^{3}+A x^{2}+x$

$$
\begin{aligned}
& x_{[2] T}=\operatorname{DBL}\left(x_{T}, A\right) \\
& x_{T+P}=\operatorname{PSEUDOADD}\left(x_{T}, x_{P}, x_{T-P}\right)
\end{aligned}
$$

x-coordinate only arithmetic

Classical formulas: $\quad y^{2}=x^{3}+a x+b$

$$
\begin{aligned}
& x_{[2] T}, y_{[2] T}=\operatorname{DBL}\left(x_{T}, y_{T}, a\right) \\
& x_{T+P}, y_{T+P}=\operatorname{ADD}\left(x_{T}, y_{T}, x_{P}, y_{P}\right)
\end{aligned}
$$

Montgomery's formulas: $\quad B y^{2}=x^{3}+A x^{2}+x$

$$
\begin{aligned}
& x_{[2] T}=\operatorname{DBL}\left(x_{T}, A\right) \\
& x_{T+P}=\operatorname{PSEUDOADD}\left(x_{T}, x_{P}, x_{T-P}\right)
\end{aligned}
$$

vs.

- opposite y 's give different x-coordinate than same-sign y 's
- decide between them with difference x_{T-P}
- Differential additions: $x_{T+P}=\operatorname{PSEUDOADD}\left(x_{T}, x_{P}, x_{T-P}\right)$

The importance of twist-security

Compact scalar multiplications on:

$$
\begin{gathered}
\mathcal{E} / \mathbb{F}_{q}: B y^{2}=x^{3}+A x^{2}+x \\
x([m] P)=\operatorname{LADDER}(m, x(P), A)
\end{gathered}
$$

- Now just \mathbb{F}_{q} values (hard ECDLP underneath)
- BUT only \approx half of $x \in \mathbb{F}_{q}$ give point on $B y^{2}=x^{3}+A x^{2}+x$
- Other \approx half give point on twist $\mathcal{E}^{\prime}: B^{\prime} y^{2}=x^{3}+A x^{2}+x$
- Bernstein '01: $\operatorname{LADDER}(m, x, A)$ will give hard ECDLP for all $x \in \mathbb{F}_{q}$ if \mathcal{E} and \mathcal{E}^{\prime} are both secure (i.e. same A for $\mathcal{E}, \mathcal{E}^{\prime}$)

The picture

- All possible $x \in \mathbb{F}_{q}$ "partitioned" to \mathcal{E} or \mathcal{E}^{\prime}
- But LADDER (m, x, A) doesn't distinguish: so users needn't
- Bernstein'06: curve25519 built on this notion

Endomorphisms on the x-line

Curve constructions

We need a curve that:
i. is defined over fast field
ii. has a useful endomorphism
iii. is twist-secure

- (ii) and (iii): Gallant-Lambert-Vanstone (GLV) - CRYPTO'01
- (i) and (ii): Galbraith-Lin-Scott - (GLS) - EUROCRYPT'09
(i), (ii) and (iii): Benjamin Smith - ASIACRYPT'13

Fast families of elliptic curves from \mathbb{Q}-curves

The curve: targeting 128 -bit security level

- the field:

$$
\mathbb{F}_{p^{2}}=\mathbb{F}_{p}(i), i^{2}+1=0 \text { and } p=2^{127}-1
$$

- the curve (and twist): defined by $A \in \mathbb{F}_{p^{2}}$

$$
\mathcal{E}: y^{2}=x^{3}+A x^{2}+x, \quad \mathcal{E}^{\prime}:\left(\frac{12}{A}\right) y^{2}=x^{3}+A x^{2}+x
$$

- the group orders:

$$
\begin{aligned}
& \# \mathcal{E}=4 N, \quad \# \mathcal{E}^{\prime}=8 N^{\prime}, \\
& \text { 252-bit prime } N \text { and 251-bit prime } N^{\prime}
\end{aligned}
$$

- security properties:

MOV deg, $\operatorname{disc}(\operatorname{End}(\mathcal{E})), h(\operatorname{End}(\mathcal{E}))$ - all huge \ldots
The (x-only) endomorphism ψ_{x}

$$
\psi_{x}(x)=\frac{A^{p}\left((x-1)^{2}+(A+2) x\right)^{p}}{-2 A x^{p}}
$$

2-dimensional differential addition chains

- Requirement: difference $U-V$ must be in chain before computing $U+V$
- One dimensional ladder: $m, x(P) \mapsto x([m] P)$
- We need two-dimensional version:

$$
a, b, x(P), x(\psi(P)) \mapsto x([a] P+[b] \psi(P))
$$

- Three variants chosen from the literature...

chain	by	\# steps	ops per step
PRAC	Montgomery	$\approx 0.9 \ell$	$\approx 1.6 \mathrm{ADD}+0.6 \mathrm{DBL}$
AK	Azarderakhsh $\& ~ K a r a b i n a ~$	$\approx 1.4 \ell$	$1 \mathrm{ADD}+1 \mathrm{DBL}$
DJB	Bernstein	ℓ	$2 \mathrm{ADD}+1 \mathrm{DBL}$

- Note: easy to force $\ell=\max \left\{\left\lceil\log _{2} a\right\rceil,\left\lceil\log _{2} b\right\rceil\right\}$ to be of constant length for constant-time chains

Kickstarting addition chains

- All three chains require inputs $x(P), x(\psi(P))$, and one of

$$
x((\psi \pm 1)(P))
$$

i.e. can't add two points without their difference

Computing the initial difference:

$$
(\psi \pm 1)_{x}(x)=f(x)+g(x) \cdot x^{(p+1) / 2}
$$

where f and g have low degree.

- Exponentiation to $(p+1) / 2=2^{126} \longrightarrow 126$ squarings
- $(\psi \pm 1)_{x}$ not as fast as ψ_{x}, or other endomorphisms around, but it could be worse...

Performance results (Ivy Bridge)

The routine

Input: scalar $m \in \mathbb{Z}$ and $x(P) \in \mathbb{F}_{p^{2}}$
(1) $a, b \leftarrow \operatorname{DECOMPOSE}(m)$
(2) $x(\psi(P)), x((\psi-1)(P)) \leftarrow \operatorname{ENDO}(x(P))$
(3) $x([m] P) \leftarrow$ CHAIN $(x(P), x(\psi(P)), x((\psi-1)(P))$

Output: $x([m] P)$

CHAIN	dimension	uniform?	constant time?	cycles
LADDER	1	\boldsymbol{J}	\boldsymbol{J}	159,000
DJB	2	\boldsymbol{V}	$\boldsymbol{\checkmark}$	148,000
AK	2	\boldsymbol{V}	\boldsymbol{x}	133,000
PRAC	2	\boldsymbol{x}	\boldsymbol{X}	109,000

Compare to curve25519 (\& ,): 182,000 cycles

Variants / alternatives / spin-offs

- Slightly faster/simpler if choosing (a, b) at random (see paper)
- Faster key_gen in ephemeral Diffie-Hellman: Alice may want to exploit pre-computations on the public generator $x(P)$:
- precompute $x(\psi(P))$ and $x((\psi+1) P)$, or
- Alice works on twisted Edwards form of \mathcal{E} before pushing to x-line for Bob
- Genus 2 analogue still open: even more attractive on the Kummer surface

Full version

http://eprint.iacr.org/2013/692

C-and-assembly software implementation

http://hhisil.yasar.edu.tr/files/hisil20140318compact.tar.gz

Magma scripts

http://research.microsoft.com/en-us/downloads/ef32422a-af38-4c83-a033-a7aafbc1db55/

