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Authenticated Encryption (AE)

• Symmetric-key function doing encryption &
authentication

• Security goal : protect plaintext from 
eavesdropping and detect ciphertext tampering
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AE is (going to be) everywhere

• Internet protocols (e.g. SSL/TLS)

• Mobile

• Storage

• Satellite

• Sensors, plants, cars, …

• An old problem, still active research area

• Cryptographic competition on AE (CAESAR) 
started
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Definition
• Nonce-based AE

– Nonce : unique for each encryption (e.g. counter)
– Associated data (AD) : data sent w/o encryption, but authentication

• AE w/ AD is also called AEAD 

• Six variables: Key (K), Nonce (N), AD (A), Plaintext (M), Ciphertext 
(C), and Tag (T) 

• AE-Enc takes (N,A,M) to produce (C,T) w/ |M|=|C|
• AE-Dec takes (N,A,C,T) to produce M if valid, ⊥ (default error 

symbol) if invalid
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Two security notions 
• Privacy (PRIV) : ciphertexts are hard to 
distinguish from random sequences
– Distinguish two oracles, AE-Enc and random ($)

• Authenticity (AUTH) : a successful forgery of 
ciphertext is hard 
– Successful forgery = receiving a (non-trivial) “valid” 
response from Dec-oracle of AE
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How can we build AE ?

• Generic composition 

• Nonce-based Encryption + MAC (message 
authentication code) basically works

• If we focus on blockcipher (BC)-based 
schemes, an example is CTR encryption + 
CMAC, using two keys 

• Security analyzed [BN00][K00] [NRS14]

• Limitation : rate is 2 (two rate-1 functions)

– rate = # of BC calls par input block
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Can we go further?

• Rate-1 AE by integration of Enc and MAC

• Many early attempts broken (~’90)

• Right solutions appeared around 2000
– IACBC, IAPM [J01], XCBC [GD01] 

– OCB [RBB03] [R04][KR11]
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Structure of OCB (w/o AD)
• Enc = ECB mode with tweakable BC (TBC) [LRW02] 

– TBC = BC taking tweaks, (N,1), (N,2), …

– Realized by BC w/ I/O masks (called XE mode [R04])

– Mask g(*) : a function of Nonce, block index, and key

• MAC = Plaintext checksum (XOR) encryption 
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OCB 
• Many good properties  
– Rate-1 

• mask generation can be done with few BC calls (usually one) 

– Parallelizable (for E & D)

– On-line 
• operation can start w/o knowing the input length

– Provably secure if BC is a strong pseudorandom 
permutation (SPRP)*

• So, can’t we go further ?
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*[AY13] showed a relaxation from SPRP 

[AY13] K.Aoki, K. Yasuda: The Security of the OCB Mode of Operation without the SPRP Assumption, ProvSec 2013



Existence of Blockcipher Inverse
• One potential disadvantage of OCB: the 
existence of BC inverse (decryption function)
– Popular rate-2 modes use only the forward 
(encryption) function of BC, i.e. inverse-free 

• Undesirable in some cases
– Increased size (Sw, Hw)
– BC inverse may be slower than forward (or vice versa)

• E.g. Byte-wise Sw AES on microcontrollers

– Stronger security assumption (SPRP rather than 
PRP/PRF)

• Can we remove BC inverse ? 
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Using Feistel rounds 
• Substituting n-bit TBC with 2n-bit balanced 
Feistel permutation
– Round function = n-bit TBC built from n-bit BC

• forward function, with input mask
• Tweak consists of Nonce, block index, and round index 

• How many rounds are needed?
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Using Feistel rounds (Contd.)
• 4 rounds are sufficient, as it is 2n-bit SPRP (Luby-Rackoff), 
but rate-2, no gain

• To keep rate-1, we have to use 2 rounds
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2-round AE construction 
• We use 2n-bit 2-R Feistel permutation instead of 
OCB’s n-bit TBC 

• n-bit checksum needs to be defined (later)

• Inverse-free, rate-1  
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2-round AE skeleton 
• We can safely assume internal TBCs are independent random 

functions indexed by tweak
– if masks are properly chosen (differentially uniform [LRW02])

• The scheme is called 2-R AE skeleton
• We analyze PRIV and AUTH of 2-R AE skeleton
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Privacy of 2-round AE skeleton 
• Each C[i] contains an output of RF invoked only 
once (as Nonce is unique) 

• Ciphertext and tag are uniformly random

• PRIV bound is zero
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Authenticity of 2-round AE skeleton 
• Now checksum is defined as a sum of even plaintext blocks
• Consider simple attack using one encryption query and one 

decryption query 
• Forgery is successful iff T* (true tag for dec query) = T’ (fake tag)
• Suppose (C[1],C[2]) was changed to (C’[1], C’[2]) and N was not 

changed
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Authenticity of 2-R AE skeleton (Contd.)
• Case C’[1] ≠� C[1] : 
• Then the first round input (Z’) is random -> M’[2] is random, unless the collision 

between Z and Z’
• If M’[2] is random, then checksum is random -> T* is random, unless the 

checksum collision
• Two collision events of prob. 1/2n

• If T* is random, the chance of guessing T* is 1/2� , for �-bit T* 
• -> AUTH bound is 2/2n + 1/2�
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Authenticity of 2-R AE skeleton (Contd.)
• Case C’[1] = C[1], C’[2] ≠� C[2] can be handled similarly, 
yielding a smaller probability

• AUTH is bounded by 2/2n + 1/2� , for single dec query
– The bound for multiple dec queries is derived using [BGM04]

• 2-R Feistel actually works
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OTR 
• OTR (Offset Two-Round) : a concrete 
instantiation of 2-R AE skeleton using a BC

• A mode like OCB but without BC inverse
• Some details: 

– Mask generation is based on constant-multiplication 
over GF(2n) (GF doubling)
• Similar to many BC modes

– AD is processed by a PRF like PMAC [R04]

• Surprisingly simple idea 
– The idea of using Feistel rounds was described at 
ManTiCore papers [ABDST04-1][ABDST04-2], while 
OTR is an independent work 

• AES-OTR submitted to CAESAR 
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[ABDST04-1] E. Anderson, C. Beaver, T. Draelos, R. Schroeppel, M. Torgerson. ManTiCore: Encryption with Joint Cipher-
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Encryption of OTR 
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Properties of OTR
• Mostly keeping OCB’s good properties    

– Rate-1
– Parallelizable (for E & D)
– On-line 

• under two-block partition, more restrictive than OCB

– Provably secure if BC is a PRP (or PRF)

• And inverse-free
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Security bounds
• Combine the bounds of 2-R skeleton w/ TBC’s 
security bounds [R04]

• Standard birthday-type bounds
– We need about 2n/2 data blocks to break OTR 
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(Toy) Software Implementations
1. Naïve C-code of OTR and OCB(2), using AES w/ 4Kb 
table (called T-table), run on x86 PC 

• Both have similar speed (20~25 cycles/byte), but 
OTR has a smaller binary object than OCB (50~60 %)
– Due to the absence of AES inverse

2. Simple substitution of T-table AES w/ AESNI (single 
block) resulted in ~2 cycles/byte for long inputs for 
OTR and OCB2

– OTR is slight slower, as expected (2-R Feistel is more 
complex than ECB)

• Optimized AESNI codes? Not yet, see [BLT14] instead
– (third-party implementations are always welcome!)
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[BLT14] A. Bogdanov, M. Lauridsen, E. Tischhauser. AES-Based Authenticated 
Encryption Modes in Parallel High-Performance Software. ePrint 2014



Conclusions
• OTR : parallelizable, rate-1 AE w/o BC inverse
• An alternative to OCB if using BC inverse is 
undesirable
– E.g. when space is precious (constrained devices, 
hardware)

– Not a ultimate substitute

• Limitations (as OCB):
– No protection against nonce-reusing (for encryption)

• ask other functions for such cases 

– Birthday-bound security

• Future topics
– Optimized implementations (Sw, Hw)
– Explore the power of (2 or more) Feistel rounds in 
other applications
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Thank you ! 
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Toy Sw Implementation 1
• Naïve C-code of OTR, with AES using 4Kb table (T-table) , 
on a standard x86 PC

• OCB2 is also implemented using the same AES and 
components (doublings etc.) 

• Expectation : OTR/OCB have similar speed, OTR has a 
smaller size (binary object) than OCB  

• The results are mostly as expected (40~50 % size reduction)
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Note : our AES dec was 
slightly slower than enc, 
resulting in slower OCB-dec
than others. 
Accidental, not always true to 
T-table AES. 



Toy Sw Implementation 2
• We then simply substituted T-table AES with AES 
instruction (AESNI)
– with SIMD codes for some subroutines

• Results: OTR and OCB achieve ~2 cycles/byte (cpb) for long 
messages
– Something unexpected (at least to me) : AESNI in single block 
has ~4.5 cpb
• The power of AESNI parallelism

– OTR is slight slower, as expected (2-R Feistel is more complex 
than ECB) 
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Other instantiations
• We can also use non-invertible primitives

– Compression function of SHA-1/2
– Full-scratch PRF (e.g. SipHash [AB12])

• If output is n-bit and input is something longer than n (to 
take N and index), skeleton is directly instantiated by 
prepending, no need to use input masks 
– Resulting security bounds will be those of skeleton
– Roughly, perfect privacy & n-bit authenticity 
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