Security Beyond the Brute-force Bound

Ari Juels Thomas Ristenpart
Cornell Tech University of Wisconsin

Encryption for which decrypting a ciphertext with any
number of *wrong#* keys vyields fake, but plausible, plaintexts

Password-based encryption

secret password user remembers PKCS#5 is dominant standard
A [
&L
M—> Encrypt —> C
f English text
Message

RSA secret keys
Password vaults

Password-based encryption

secret password user remembers PKCS#5 is dominant standard
wﬁ\(ﬁ pw Encrypt(pw, M)
e~ | salt € {0,1}128
M—> Encrypt —> C K « H(pw || salt)
f English text C<« KOM
Message Return (salt,C)
RSA secret keys

Password vaults Decrypt(pw, salt,C)

. K < H¢(pw || salt)
c times
AL M« KDC

. I Return M
pw| |salt —B—IB— —IB— K

Cryptographic hash function H
(H = SHA-256, SHA-512, etc.) Common choice is ¢=10,000

Why hash chains and salts?

Slow down brute-force attacks

Internet users ditch “password”
password, upgrade to “123456”

Contest for most commonly used terrible password has a new champion.

by Jon Brodkin - Jan 20 2014, 4:00pm GMT

[Bonneau 2012] studied 69 million Yahoo! Passwords
1.1% of users pick same password

[People choose weak passwords }

Brute-force attacks

pw likely to fall in short sequence of guesses pw,,pw,,pw;, ...

(I

TG
e~

M—> Encrypt — salt,C

Step 1: Trial decryptions
M, <- Decrypt(pw,,salt,C)
M, <- Decrypt(pw,,salt,C)
M, <- Decrypt(pws,,salt,C)

salt,C

Brute-force attacks

pw likely to fall in short sequence of guesses pw,,pw,,pw;, ...

(I

T
A~

M—> Encrypt —> salt,C

Say M is unknown ASCI| text encoded in binary

Step 1: Trial decryptions

M, <- H(pw,
M, <- H¢(pw,
M, <- H(pwj,

salt,C

salt) ©C
salt) G C
salt) B C

Many bytes won’t be valid ASCII
characters, let alone “look” like
English text.

Step 2: Find true plaintext
—M—S—&gé%#—l —
-Mo=-hgjklale&ewj—

M, = copenhagen

Brute-force attacks

pw likely to fall in short sequence of guesses pw,,pw,,pw;, ...

v pxw Analyses ignore Step 2,
\%ﬁ/&iﬁ | conservatively assuming it is
Y —_— salt,C trivial for attacker

Say M is unknown prime number encoded as integer

- Hash chain slows attack by factor of c Primality tests will eliminate

- Salt prevents rainbow tables, majority of candidate plaintexts
provide separation between users

Step 1: Trial decryptions Step 2: Find true plaintext
M, <- H%pw, || salt) ©C -M=6123410

M, <- H(pw, | | salt) &C :> M, = 1299827

M; <- H%pws; || salt) ©C M3 =7321162—

salt,C

The Brute-force Bound

Say pw has min-entropy m (most likely password has probability 1/2™)

Corollary [BRT12]: Encrypt is such that for all IND-CPA adversaries A

—— < Adv(Encrypt,A) < —
c2™m (VPLA) c2™m

where t = cq for some q is the number of queries to H modeled as a RO,
and ignoring small constants and negligible terms

[B12]: most likely password has prob. 1.1% meaning m = 6.5
Sot> 1,000,000 makes the above bound close to 1 for c = 10,000

(A) Existing countermeasures help slow down attacks
but only ensure security for high-entropy pw
(B) Best we can do when targeting IND-CPA

Beyond the brute-force bound?
6&) plw Key intuition:

((__4\

Step 2 may be hard for attacker
for some message distributions

M —> Encrypt —> salt,C

Say M is uniformly distributed bit string
Seems impossible to distinguish!
Step 1: Trial decryptions Step 2: Find true plaintext
M, <- H%pw, || salt) ©C v M;=101010101

saltc Mz <- H(pw, || salt) ©C . M,=100111010
"~ M, <- Hepw, || salt) ®C YT M, =010101011

Application: compromise resilience for credentials

[Hoover, Kausik 99]

< pw Authentication
\ l protocol
((__4\

sk,—> Encrypt —> salt,C

\ Public-key for client
RSA secret exponent d encoded as (uniform) bit string stored only at server

Modulus N left in clear.
Decrypt only when user wants to authenticate

If attacker just obtains C, best strategy is online attack

using M, M, , Significantly harder to mount than offline attack
Step 1: Trial decryptions Step 2: Find true plaintext
M, <- H%pw, || salt) ©C M, =101010101
M, <- Hpw, || salt) &C ,{{1, M, =100111010

M, <- H(pw, | | salt) @C ** M, =010101011

Decoys in computer security

* In computer security, we have
“honey objects”:
— Honeypots, honeytokens, honey accounts
— Decoy documents [BHKSO09]
— Kamoflauge system [BBBB10]
— Honeywords for password hashing [JR13]

e Cryptographic camouflage [Hoover, Kausik 99]

We introduce Honey Encryption (HE)

pw

y

Honey

Encrypt — salt,C

M—

Encryption schemes tailored to specific message distributions

Secure in [BRT12] sense (use hash chains and salting)

Provable message-recovery security beyond brute-force bound.
We will show optimal security in some cases:

1 Probability of

Pr[message recovery] < = guessing
password

A framework for HE schemes

Let M be a message distribution
MM pwW

!

Honey
M ——> Encrypt —> salt,C
Randomized Conventional PKCS#5
encoder style encryption.

No padding, redundancy

A framework for HE schemes

Let M be a message distribution

M« M

Distribution-
transforming
decoder

pw

l

Password-based
decryption

<« salt,C

A framework for HE schemes

Let M be a message distribution

M« M

M’ «—

Distribution-
transforming
decoder

pw’

l

pw’ # pw

D —

SI

Password-based
decryption

<« salt,C

\

Fresh sample from M

Fresh uniform bit string

A framework for HE schemes

Let M be a message distribution

M« M

Distribution-
M’ <— transforming

pw’ pw’ # pw

l

D —

SI

Password-based

decryption salt,C

\ decoder

Fresh sample from M

Fresh uniform bit string

Distribution-
M’ <— transforming

pw”’ # pw

7
pw qu + pWI

l

D Sm—

SII

Password-based
decryption

\ decoder

Another fresh
sample from M

\

Another fresh uniform bit string

A framework for HE schemes

Let M be a message distribution
MM pw

l

Distribution-
; ¢ , Password-based
M <— ranstorming T decryption <« salt,C
decoder

Intuition:
(1) Decoder is sampler using input as string of randomness
) Decryption under different keys yields uniform bits

A framework for HE schemes

Let M be a message distribution

pw

M&M
Distribution-
M <— transforming
decoder

l

«—— H(pw || salt) (B C

<« salt,C

DTE = (encode, decode) designed for particular M
decode deterministic

encode randomized

Toy example M

Message Probability

eurocrypt 1/4
tivoligarden 1/2
Copenhagen 1/4

encode(M)

If M = tivoligarden then b <« {0,1}; Return Ob
If M = eurocrypt then Return 11
If M = Copenhagen then Return 10

decode via look-up table

Huffman coding without compression

A framework for HE schemes

Let M be a message distribution
MM

pw

l

Distribution-

M <— transforming «—— H(pw || salt) (B C

decoder S

<« salt,C

DTE = (encode, decode) designed for particular M
encode randomized decode deterministic

DTE for M being uniform n-bit prime numbers

Encode(M) Decode(S)
Xy Xo €S (Z,) Xy, X, €S

Find 15t i with X. prime Find 1st i with X; prime

Return S =X,,... X Return M

Classic
rejection-
sampling prime
generation

A framework for HE schemes

Let M be a message distribution
MM pw

l

Distribution-
M <«— transforming e—— H(pw || salt) HC —— salt,C
decoder S

DTE = (encode, decode) designed for particular M
encode randomized decode deterministic

Many DTEs only approximate correct distribution. Secure if:

M & M S «s${0,1F
S «$ encode(M) M < decode(S)
Return (M,S) Return (M,S)

N

Honey encryption so far

e Intuition: decryption with wrong password
gives plausible plaintext

e Applications in resilience to compromise of
encrypted credentials

* Framework:
(1) Distribution-transforming encoders (DTEs)

(More examples in paper!)

(2) Conventional password-based encryption

Security for honey encryption

Never worse than existing password-based encryption

Inherit provable security in sense of [BRT12]

We analyze message recovery (MR) security

, Example: HE for uniform primes
MR game:) : .
M < M M is uniform n-bit primes
P has min-entropy m
HE scheme as described before

pw <s P
salt,C <$ HEnc(pw, M)

M’ «s A(salt,C)

Thm (informal). For any MR attacker A
Ret (M=M’)

Pr[wins MR game] < 1/2™
(ignoring smaller terms)

M is message distribution

P is password distribution

Intuition for proofs

Allow information-theoretic adversaries (also unbounded RO queries)
Adversary outputs most probable message
After applying DTE security, can bound advantage via balls-and-bins game

Decryption of challenge ciphertext with each password
is independent ball throw into bins (when H is RO)

Balls are passwords Q/’ﬁ
of size equal to their @ 0 Q/
probability OQQ/k \

P P, Py

Bins are messages of size

Adversary’s advantage maximized by equal to their probability under decode
picking heaviest bin at end of game

Expected maximum load E[L] is
expected weight of heaviest bin

Well-studied for some settings

Intuition for proofs

Allow information-theoretic adversaries (also unbounded RO queries)
Adversary outputs most probable message
After applying DTE security, can bound advantage via balls-and-bins game

Decryption of challenge ciphertext with each password
is independent ball throw into bins (when H is RO)

Balls are passwords Q/’ﬁ

of size equal to their QQ Q/
probability - QQ/(\
(Equal weight 1/2™ for p p p
uniform distribution) 1 : :

Bins are messages of size

Adversary’s advantage maximized by equal to their probability under decode
picking heaviest bin at end of game (Equal weight 1/2" for uniform distribution)
Expected maximum load E[L] is For prime number HE:

expected weight of heaviest bin k=2 and k2<<?2m

Well-studied for some settings Pr[wins MR game] < E[L] = 1/2™ + negl

In the paper...

More DTEs, more HE constructions
More general balls-and-bins analyses

Discussion of extensions
— dealing with password typos
— detecting online brute-force attacks

Discussion of limitations of HE

Summary

Def. Honey Encryption
Encryption for which decrypting a ciphertext with any
number of wrong keys yields fake, but plausible, plaintexts

A framework for building and analyzing HE schemes
using Distribution-Transforming Encoders

~ DTEs for more complex distributions
e Password vaults

Moving forward: <

Further analyses, constructions
e Standard model
_ * Sharpened balls-and-bins bounds

