Polynomial Time Attack against Wild McEliece over Quadratic Extensions

Alain Couvreur, Ayoub Otmani, Jean-Pierre Tillich

INRIA/École Polytechnique, Université de Rouen, INRIA

EUROCRYPT 2014, Copenhagen

McEliece scheme

- Secret Key : A generator matrix G ∈ M_{k×n}(F_q) of a code C having an efficient t-correcting algorithm;
- Public Key : G' := SGP, where $S \in GL(k, \mathbb{F}_q)$ and P is an $n \times n$ permutation matrix;
- Encryption : $m \in \mathbb{F}_q^k \longrightarrow y \stackrel{\text{def}}{=} mG' + e.$
- Decryption : $y \longmapsto yP^{-1} = mSG + eP^{-1} \longmapsto mS \longmapsto m.$

Advantages and drawbacks

Advantages

- Post Quantum ;
- Efficient encryption and decryption (compared to RSA, El Gamal) : For instance, the original McEliece has
 - encryption \approx 5 times quicker than RSA 1024 (with public exponent 17)
 - decryption \thickapprox 150 times quicker than RSA 1024.

Drawbacks

• Huge size of the keys : The original proposal (McEliece 1977) : $[1024, 524, 101]_2$ has a 67ko key (more than 500 times RSA 1024 for a similar security).

Definition (Generalized Reed-Solomon Codes (GRS))

Let $x \in \mathbb{F}_{q^m}^n$ be a support and $\Gamma \in \mathbb{F}_{q^m}[x]$. The Goppa code $\mathscr{G}(x, \Gamma)$ is defined as $\mathscr{G}(x, \Gamma) \stackrel{\text{def}}{=}$

$$\mathsf{GRS}_{\deg \Gamma}(x, y)^{\perp} \cap \mathbb{F}_q^n.$$

and $\forall i, y_i = \frac{1}{\Gamma(x_i)}$.

Let $x \in \mathbb{F}_{q^m}^n$ be a support and $\Gamma \in \mathbb{F}_{q^m}[x]$. The Goppa code $\mathscr{G}(x, \Gamma)$ is defined as $\mathscr{G}(x, \Gamma) \stackrel{\text{def}}{=}$

$$\operatorname{GRS}_{\operatorname{deg}\Gamma}(x,y)^{\perp}\cap \mathbb{F}_{q}^{n}$$

and $\forall i, y_i = \frac{1}{\Gamma(x_i)}$.

When the Goppa polynomial Γ is of the form $\Gamma(z) = \gamma(z)^q$ for some squarefree $\gamma \in \mathbb{F}_{q^m}[z]$, the Goppa code is said to be *wild*.

When the Goppa polynomial Γ is of the form $\Gamma(z) = \gamma(z)^q$ for some squarefree $\gamma \in \mathbb{F}_{q^m}[z]$, the Goppa code is said to be *wild*.

Wild Goppa codes have

- Better correction capacity (Sugyiama et al. 1976)
- hence provide a higher security (Bernstein, Lange, Peters, 2010)

GRS codes are proposed for McEliece by Niederreiter (1986).

Sidelnikov, Shestakov (1992) give a key-recovery attack in $O(n^3)$.

Given two codes \mathscr{A} , \mathscr{B} in \mathbb{F}^n_a ,

$$\mathscr{A} \star \mathscr{B} \stackrel{\mathsf{def}}{=} \operatorname{Span}_{\mathbb{F}_q} \left\{ a \star b \mid a \in \mathscr{A}, \ b \in \mathscr{B} \right\}.$$

* denotes the component wise product : $a \star b \stackrel{\text{def}}{=} (a_1 b_1, \ldots, a_n b_n)$.

Proposition

$$\dim(\mathscr{A}\star\mathscr{A}) \leq \min\left\{n, \binom{\dim\mathscr{A}+1}{2}\right\}$$

Theorem (Cascudo, Cramer, Mirandola, Zémor. (In progress))

Let \mathscr{A} be a random code of length n and dimension k such that $n > \binom{k+1}{2}$. Then for all integer $l < \binom{k+1}{2}$

$$\operatorname{Prob}\left(\operatorname{dim}(\mathscr{A}\star\mathscr{A}) \leq \left(\operatorname{dim}\mathscr{A}+1\atop 2\right) - \ell\right) = o(q^{-\ell}). \quad (k \to +\infty)$$

Distinguisher on GRS codes

Theorem

Let $x, y \in \mathbb{F}_q^n$ be a support and a multiplier. Let k < n/2, then $GRS_k(x, y)^{*2} = GRS_{2k-1}(x, y^{*2})$ and hence : $\dim GRS_k(x, y)^{*2} = 2k - 1.$

Distinguisher on GRS codes

Theorem

Let $x, y \in \mathbb{F}_q^n$ be a support and a multiplier. Let k < n/2, then

$$\mathsf{GRS}_k(x, y)^{\star 2} = \mathsf{GRS}_{2k-1}(x, y^{\star 2})$$

and hence :

dim
$$GRS_k(x, y)^{*2} = 2k - 1.$$

Application (Wieschebrink (2010))

An attack against Berger Loidreau proposal (2005) based on subcodes of low codimension of GRS codes.

Public key : \mathscr{C} : a Goppa code $\mathscr{G}(x, \gamma^q)$ over a quadratic extension (m = 2).

Distinguisher by shortening

In general Goppa codes are not distinguishable by squares. But in the specific case of wild Goppa Codes over a quadratic extension :

Theorem (C-, Otmani, Tillich 2014)

 $\mathscr{G}(x, \gamma^{q-1})$ shortened at a positions is distinguishable if $a \in \{a^-, \ldots, a^+\}$:

$$a^{-} = n - 2r(q+1) - 1$$

$$a^{+} = \max \left\{ a \ge 0 \mid \begin{array}{c} 3(n-a) - 4r(q+1) - 2 \le \\ \min \left\{ n - a, \binom{n-a-2r(q-1)+r(r-2)}{2} \right\} \end{array} \right\}$$

Remark

The interval $\int a^{\pm}$ a^{\pm}] is performed if i	when $q \ge$	9	19	37	64
The interval $\{a, \ldots, a\}$ is nonempty if .	r >	2	3	4	5

A. Couvreur, A. Otmani, J.-P. Tillich

The heart of our attack

The heart of our attack

We know

$$\begin{array}{ccc} \mathscr{C}_0 \stackrel{\text{def}}{=} \mathscr{C} & \longleftrightarrow & \mathbb{F}_{q^2}[x] \\ \mathscr{C}_1 & \longleftrightarrow & x \mathbb{F}_{q^2}[x] \end{array}$$

 \mathscr{C}_1 is obtained by computing the words having some entry set to zero (elementary linear algebra).

The heart of our attack

We know

$$\begin{array}{ccc} \mathscr{C}_0 \stackrel{\text{def}}{=} \mathscr{C} & \longleftrightarrow & \mathbb{F}_{q^2}[x] \\ \mathscr{C}_1 & \longleftrightarrow & x \mathbb{F}_{q^2}[x] \end{array}$$

 \mathscr{C}_1 is obtained by computing the words having some entry set to zero (elementary linear algebra).

To compute $\mathscr{C}_2 \longleftrightarrow x^2 \mathbb{F}_{q^2}[x]$, notice that

 $\mathscr{C} \star \mathscr{C}_2 \subseteq \mathscr{C}_1 \star \mathscr{C}_1.$

The heart of our attack

We know

$$\begin{array}{ccc} \mathscr{C}_0 \stackrel{\text{def}}{=} \mathscr{C} & \longleftrightarrow & \mathbb{F}_{q^2}[x] \\ \mathscr{C}_1 & \longleftrightarrow & x \mathbb{F}_{q^2}[x] \end{array}$$

 \mathscr{C}_1 is obtained by computing the words having some entry set to zero (elementary linear algebra).

To compute $\mathscr{C}_2 \longleftrightarrow x^2 \mathbb{F}_{q^2}[x]$, notice that

 $\mathscr{C} \star \mathscr{C}_2 \subseteq \mathscr{C}_1 \star \mathscr{C}_1.$

Hence, \mathscr{C}_2 can be computed as the set of solutions z of

$$\begin{cases} z \in \mathcal{C}_1 \\ z \star \mathcal{C} \subseteq \mathcal{C}_1 \star \mathcal{C}_1 \end{cases}$$

.

$$\mathscr{C} = \mathscr{C}_0$$

$$\mathscr{C} = \mathscr{C}_0 \supseteq \mathscr{C}_1$$

$$\mathscr{C} = \mathscr{C}_0 \supseteq \mathscr{C}_1 \supseteq \mathscr{C}_2 \supseteq \cdots$$

Our Attack

$$\mathscr{C} = \mathscr{C}_0 \supseteq \mathscr{C}_1 \supseteq \mathscr{C}_2 \supseteq \cdots \supseteq \mathscr{C}_{q+1}$$

Our Attack

• Step 1. Compute

$$\mathscr{C} = \mathscr{C}_0 \supseteq \mathscr{C}_1 \supseteq \mathscr{C}_2 \supseteq \cdots \supseteq \mathscr{C}_{q+1}$$

• Step 2. From \mathscr{C}_{q+1} , one can compute $x^{\star(q+1)} = (x_0^{q+1}, x_1^{q+1}, \dots, x_{n-1}^{q+1})$. (It uses the norm over \mathbb{F}_{q^2} .) Reapplying Step 1 and 2, one can also compute : $(x-1)^{\star(q+1)} = ((x_0-1)^{q+1}, (x_1-1)^{q+1}, \dots, (x_{n-1}-1)^{q+1})$

Our Attack

$$\mathscr{C} = \mathscr{C}_0 \supseteq \mathscr{C}_1 \supseteq \mathscr{C}_2 \supseteq \cdots \supseteq \mathscr{C}_{q+1}$$

- Step 2. From \mathscr{C}_{q+1} , one can compute $x^{\star(q+1)} = (x_0^{q+1}, x_1^{q+1}, \dots, x_{n-1}^{q+1})$. (It uses the norm over \mathbb{F}_{q^2} .) Reapplying Step 1 and 2, one can also compute : $(x-1)^{\star(q+1)} = ((x_0-1)^{q+1}, (x_1-1)^{q+1}, \dots, (x_{n-1}-1)^{q+1})$
- Step 3. Deduce from $x^{\star(q+1)}$ and $(x-1)^{\star(q+1)}$ the support x up to Galois action.

Our Attack

$$\mathscr{C} = \mathscr{C}_0 \supseteq \mathscr{C}_1 \supseteq \mathscr{C}_2 \supseteq \cdots \supseteq \mathscr{C}_{q+1}$$

- Step 2. From \mathcal{C}_{q+1} , one can compute $x^{\star(q+1)} = (x_0^{q+1}, x_1^{q+1}, \dots, x_{n-1}^{q+1})$. (It uses the norm over \mathbb{F}_{q^2} .) Reapplying Step 1 and 2, one can also compute : $(x-1)^{\star(q+1)} = ((x_0-1)^{q+1}, (x_1-1)^{q+1}, \dots, (x_{n-1}-1)^{q+1})$
- Step 3. Deduce from $x^{\star(q+1)}$ and $(x-1)^{\star(q+1)}$ the support x up to Galois action.
- Step 4. A bit more technique to deduce x and the Goppa Polynomial γ.

Complexity and running times

Complexity : $O(n^4 \sqrt{n} + n^4(q^2 - n))$ (recall that $n \le q^2$).

Table : Running times with an Intel[®] Xeon 2.27GHz

[q, n, k, r]	[29,781, 516,5] 🕏	[29, 791, 575, 4] 🛠	[29,794,529,5] 😾
Average time	16min	19.5min	15.5min
(q, n, k, r)	[31, 795, 563, 4] 😾	[31,813, 581,4] 😾	[31, 851, 619, 4] 🛠
Average time	31.5min	31.5min	27.2min
(q, n, k, r)	[32,841,601,4] 🛠	[31, 900, 228, 14]	
Average time	49.5min	24min	

Proposed parameters (Bernstein, Lange, Peters 2010) Never proposed parameters Complexity and running times

Complexity : $O(n^4 \sqrt{n} + n^4(q^2 - n))$ (recall that $n \le q^2$).

Table : Running times with an Intel[®] Xeon 2.27GHz

[q, n, k, r]	[29,781, 516,5] 🕏	[29, 791, 575, 4] 🕏	[29,794,529,5] 😾
Average time	16min	19.5min	15.5min
(q, n, k, r)	[31, 795, 563, 4] 🕸	[31,813, 581,4] 🕏	[31, 851, 619, 4] 🛠
Average time	31.5min	31.5min	27.2min
(q, n, k, r)	[32,841,601,4] 😾	[31, 900, 228, 14]	
Average time	49.5min	24min	

Proposed parameters (Bernstein, Lange, Peters 2010) Never proposed parameters (More than 2^{130} possible choices for γ and security > 125 bits with respect to ISD)

Conclusion

• We broke McEliece based on Wild Goppa codes $\mathscr{G}(x, \gamma^{q-1})$ for

۲	m = 2;					
• deg '	dog 2/ c t i	when $q \ge$	9	19	37	64
	deg y s.t	r >	2	3	4	5

- We broke McEliece based on Wild Goppa codes $\mathscr{G}(x,\gamma^{q-1})$ for
 - m = 2; • deg γ s.t. : $\frac{when \ q \ge 9 \ 19 \ 37 \ 64}{r > 2 \ 3 \ 4 \ 5}$
- It is the first polynomial time key-recovery attack against a family of non trivial subfield subcodes of GRS codes.

- We broke McEliece based on Wild Goppa codes $\mathscr{G}(x,\gamma^{q-1})$ for
 - m = 2; • deg γ s.t. : $\frac{when \ q \ge 9 \ 19 \ 37 \ 64}{r > 2 \ 3 \ 4 \ 5}$
- It is the first polynomial time key-recovery attack against a family of non trivial subfield subcodes of GRS codes.
- From a distinguisher, we got an attack.

- We broke McEliece based on Wild Goppa codes $\mathscr{G}(x,\gamma^{q-1})$ for
 - m = 2; • deg γ s.t. : $\frac{when \ q \ge 9 \ 19 \ 37 \ 64}{r > 2 \ 3 \ 4 \ 5}$
- It is the first polynomial time key-recovery attack against a family of non trivial subfield subcodes of GRS codes.
- From a distinguisher, we got an attack.
- Question : are other distingushable codes breakable ? For instance high rate Goppa codes (distinguisher on the dual).

Thank you for your attention.