A Bound For Multiparty Secret Key Agreement
 And
 Implications For A Problem Of Secure Computing

Himanshu Tyagi and Shun Watanabe

Multiparty Secret Key Agreement

Party i computes $K_{i}\left(X_{i}, \mathbf{F}\right) \in \mathcal{K} ; \quad$ Eavesdropper observes \mathbf{F}, Z
K_{1}, \ldots, K_{m} constitute an (ϵ, δ)-secret key of length $\log \mathcal{K}$ if

$$
\begin{aligned}
\mathrm{P}\left(K_{1}=K_{2}=\ldots=K_{m}\right) \geq 1-\epsilon, & : \text { Recoverability } \\
\frac{1}{2}\left\|\mathrm{P}_{K_{1} \mathbf{F} Z}-\mathrm{P}_{\mathrm{unif}} \times \mathrm{P}_{\mathbf{F} Z}\right\|_{1} \leq \delta, & : \text { Secrecy }
\end{aligned}
$$

Alternative Definition of a Secret Key

K_{1}, \ldots, K_{m} constitute an ϵ-secret key of length $\log \mathcal{K}$ if

$$
\frac{1}{2}\left\|\mathrm{P}_{K_{1} K_{2} \ldots K_{m} \mathbf{F} Z}-\mathrm{P}_{\mathrm{unif}, m} \times \mathrm{P}_{\mathbf{F} Z}\right\|_{1} \leq \epsilon,
$$

where

$$
\mathrm{P}_{\mathrm{unif}, m}\left(k_{1}, \ldots, k_{m}\right)=\frac{1}{|\mathcal{K}|} \mathbb{1}\left(k_{1}=\ldots k_{m}\right) .
$$

Alternative Definition of a Secret Key

K_{1}, \ldots, K_{m} constitute an ϵ-secret key of length $\log \mathcal{K}$ if

$$
\frac{1}{2}\left\|\mathrm{P}_{K_{1} K_{2} \ldots K_{m} \mathbf{F} Z}-\mathrm{P}_{\mathrm{unif}, m} \times \mathrm{P}_{\mathbf{F} Z}\right\|_{1} \leq \epsilon,
$$

where

$$
\mathrm{P}_{\mathrm{unif}, m}\left(k_{1}, \ldots, k_{m}\right)=\frac{1}{|\mathcal{K}|} \mathbb{1}\left(k_{1}=\ldots k_{m}\right) .
$$

Lemma

$(\epsilon, \delta)-S K \Rightarrow(\epsilon+\delta)-S K$, and conversely, $\epsilon-S K \Rightarrow(\epsilon, \epsilon)-$ SK.

Multiparty Secret Key Agreement

K_{1}, \ldots, K_{m} constitute an ϵ-secret key of length $\log \mathcal{K}$ if

$$
\frac{1}{2}\left\|\mathrm{P}_{K_{1} K_{2} \ldots K_{m} \mathbf{F} Z}-\mathrm{P}_{\mathrm{unif}, m} \times \mathrm{P}_{\mathbf{F} Z}\right\|_{1} \leq \epsilon
$$

Definition

$S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \triangleq$ maximum length of an ϵ-secret key

Upper bound for $S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right)$

No Correlation No Secret Key

If X_{1} and X_{2} are independent conditioned on Z :

$$
S_{\epsilon}\left(X_{1}, X_{2} \mid Z\right) \approx 0
$$

No Correlation No Secret Key

If X_{1} and X_{2} are independent conditioned on Z :

$$
S_{\epsilon}\left(X_{1}, X_{2} \mid Z\right) \approx 0
$$

If for some partition $\pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of $\{1, \ldots, m\}$, $X_{\pi_{1}}, \ldots, X_{\pi_{k}}$ are independent conditioned on Z :

$$
S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \approx 0
$$

No Correlation No Secret Key

If X_{1} and X_{2} are independent conditioned on Z :

$$
S_{\epsilon}\left(X_{1}, X_{2} \mid Z\right) \approx 0
$$

If for some partition $\pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of $\{1, \ldots, m\}$,
$X_{\pi_{1}}, \ldots, X_{\pi_{k}}$ are independent conditioned on Z :

$$
S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \approx 0
$$

Bound $S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right)$ in terms of "how far" is $\mathrm{P}_{X_{1}, \ldots, X_{m} Z}$ is from a conditionally independent distribution

Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

$$
\begin{gathered}
H 0: \quad X \sim P \\
\text { vs. } \\
H 1: \quad X \sim Q
\end{gathered}
$$

Define

$$
\beta_{\epsilon}(P, Q) \triangleq \inf \sum_{x \in \mathcal{X}} Q(x) T(0 \mid x)
$$

where the inf is over all random tests $T: \mathcal{X} \rightarrow\{0,1\}$ s.t.

$$
\sum_{x \in \mathcal{X}} P(x) T(1 \mid x) \leq \epsilon .
$$

Digression: Binary Hypothesis Testing

Consider the following binary hypothesis testing problem:

$$
\begin{aligned}
& H 0: \quad X \sim P \\
& \quad \text { vs. } \\
& H 1: \quad X \sim Q
\end{aligned}
$$

Define

$$
\beta_{\epsilon}(P, Q) \triangleq \inf \sum_{x \in \mathcal{X}} Q(x) T(0 \mid x)
$$

where the inf is over all random tests $T: \mathcal{X} \rightarrow\{0,1\}$ s.t.

$$
\sum_{x \in \mathcal{X}} P(x) T(1 \mid x) \leq \epsilon
$$

Data processing. For every stochastic matrix $W: \mathcal{X} \rightarrow \mathcal{Y}$

$$
\beta_{\epsilon}(P, Q) \leq \beta_{\epsilon}(P W, Q W)
$$

Reduction Argument

Given a partition $\pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of $\{1, \ldots, m\}$

- Let $\mathrm{Q}\left(x_{1}, \ldots, x_{m} \mid z\right)=\prod_{i=1}^{k} \mathrm{Q}\left(x_{\pi_{i}} \mid z\right)$

For the binary hypothesis testing:

$$
\begin{array}{ll}
H 0: & X_{1}, \ldots, X_{m}, Z \sim \mathrm{P} \\
H 1: & X_{1}, \ldots, X_{m}, Z \sim \mathrm{Q}
\end{array}
$$

consider the degraded observations $K_{1}, \ldots, K_{m}, \mathbf{F}, Z$.

Reduction Argument

Given a partition $\pi=\left\{\pi_{1}, \ldots, \pi_{k}\right\}$ of $\{1, \ldots, m\}$

- Let $\mathrm{Q}\left(x_{1}, \ldots, x_{m} \mid z\right)=\prod_{i=1}^{k} \mathrm{Q}\left(x_{\pi_{i}} \mid z\right)$

For the binary hypothesis testing:

$$
\begin{array}{ll}
H 0: & X_{1}, \ldots, X_{m}, Z \sim \mathrm{P} \\
H 1: & X_{1}, \ldots, X_{m}, Z \sim \mathrm{Q}
\end{array}
$$

consider the degraded observations $K_{1}, \ldots, K_{m}, \mathbf{F}, Z$.
Let $W_{K_{1} \ldots K_{m} \mathbf{F} \mid X_{1} \ldots X_{m} Z}$ represent the protocol.

Reduction Argument

Consider the degraded binary hypothesis testing:

$$
\begin{array}{ll}
H 0: & K_{1}, \ldots, K_{m}, \mathbf{F}, Z \sim \mathrm{P}_{K_{1} \ldots, K_{m} \mathbf{F} Z}=\mathrm{P} W \\
H 1: & K_{1}, \ldots, K_{m}, \mathbf{F}, Z \sim \mathrm{Q}_{K_{1} \ldots, K_{m} \mathbf{F} Z}=\mathrm{Q} W
\end{array}
$$

Consider a test with the acceptance region \mathcal{A} defined by:

$$
\mathcal{A} \triangleq\left\{\log \frac{\mathrm{P}_{\mathrm{unif}, m}\left(K_{1}, \ldots, K_{m}\right)}{\mathrm{Q}_{K_{1} \ldots K_{m} \mid \mathbf{F} Z}\left(K_{1} \ldots K_{m} \mid \mathbf{F}, Z\right)} \geq \lambda_{\pi}\right\}
$$

where

$$
\lambda_{\pi}=(|\pi|-1) \log |\mathcal{K}|-|\pi| \log (1 / \eta)
$$

Reduction Argument

Consider the degraded binary hypothesis testing:

$$
\begin{array}{ll}
H 0: & K_{1}, \ldots, K_{m}, \mathbf{F}, Z \sim \mathrm{P}_{K_{1} \ldots, K_{m} \mathbf{F} Z}=\mathrm{P} W \\
H 1: & K_{1}, \ldots, K_{m}, \mathbf{F}, Z \sim \mathrm{Q}_{K_{1} \ldots, K_{m} \mathbf{F} Z}=\mathrm{Q} W
\end{array}
$$

Consider a test with the acceptance region \mathcal{A} defined by:

$$
\mathcal{A} \triangleq\left\{\log \frac{\mathrm{P}_{\mathrm{unif}, m}\left(K_{1}, \ldots, K_{m}\right)}{\mathrm{Q}_{K_{1} \ldots K_{m} \mid \mathbf{F} Z}\left(K_{1} \ldots K_{m} \mid \mathbf{F}, Z\right)} \geq \lambda_{\pi}\right\}
$$

where

$$
\lambda_{\pi}=(|\pi|-1) \log |\mathcal{K}|-|\pi| \log (1 / \eta)
$$

Likelihood ratio test with $\mathrm{P}_{K_{1} \ldots K_{m} \mid \mathbf{F} Z}$ replaced by $\mathrm{P}_{\text {unif }, m}$

- recall: $\frac{1}{2}\left\|\mathrm{P}_{K_{1} K_{2} \ldots K_{m} \mathbf{F} Z}-\mathrm{P}_{\text {unif }, m} \times \mathrm{P}_{\mathbf{F} Z}\right\|_{1} \leq \epsilon$

Reduction Argument

Missed Detection: $\mathrm{Q}_{K_{1} \ldots K_{m} \mathbf{F} Z}(\mathcal{A}) \leq|\mathcal{K}|^{1-|\pi|} \eta^{-|\pi|}$

False Alarm:

$$
\mathrm{P}_{K_{1} \ldots K_{m} \mathbf{F} Z}\left(\mathcal{A}^{c}\right) \leq \epsilon+\eta
$$

Reduction Argument

Missed Detection: $\mathrm{Q}_{K_{1} \ldots K_{m} \mathbf{F} Z}(\mathcal{A}) \leq|\mathcal{K}|^{1-|\pi|} \eta^{-|\pi|}$ - easy
False Alarm: $\quad \mathrm{P}_{K_{1} \ldots K_{m} \mathbf{F} Z}\left(\mathcal{A}^{c}\right) \leq \epsilon+\eta \quad$ - requires work

Lemma (Reduction)

For every $0 \leq \epsilon<1$ and $0<\eta<1-\epsilon$,
$S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \leq \frac{1}{|\pi|-1}\left[-\log \beta_{\epsilon+\eta}(\mathrm{P} W, \mathrm{Q} W)+|\pi| \log (1 / \eta)\right]$.

Reduction Argument

Missed Detection: $\mathrm{Q}_{K_{1} \ldots K_{m} \mathbf{F} Z}(\mathcal{A}) \leq|\mathcal{K}|^{1-|\pi|} \eta^{-|\pi|}$ - easy
False Alarm: $\quad \mathrm{P}_{K_{1} \ldots K_{m} \mathbf{F} Z}\left(\mathcal{A}^{c}\right) \leq \epsilon+\eta \quad$ - requires work

Lemma (Reduction)

For every $0 \leq \epsilon<1$ and $0<\eta<1-\epsilon$,
$S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \leq \frac{1}{|\pi|-1}\left[-\log \beta_{\epsilon+\eta}(\mathrm{P} W, \mathrm{Q} W)+|\pi| \log (1 / \eta)\right]$.
By data processing: $\beta_{\epsilon+\eta}(\mathrm{P} W, \mathrm{Q} W) \geq \beta_{\epsilon+\eta}(\mathrm{P}, \mathrm{Q})$

Conditional Independence Testing Bound

Theorem

For every $0 \leq \epsilon<1$ and $0<\eta<1-\epsilon$,

$$
S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \leq \frac{1}{|\pi|-1}\left[-\log \beta_{\epsilon+\eta}(\mathrm{P}, \mathrm{Q})+|\pi| \log (1 / \eta)\right]
$$

where

$$
\mathrm{Q}\left(x_{1}, \ldots, x_{m} \mid z\right)=\prod_{i=1}^{k} \mathrm{Q}\left(x_{\pi_{i}} \mid z\right)
$$

For two parties:
$S_{\epsilon}\left(X_{1}, X_{2} \mid Z\right) \leq-\log \beta_{\epsilon+\eta}\left(\mathrm{P}_{X_{1} X_{2} Z}, \mathrm{P}_{X_{1} \mid Z} \mathrm{P}_{X_{2} \mid Z} \mathrm{P}_{Z}\right)+2 \log (1 / \eta)$

Conditional Independence Testing Bound

Theorem

For every $0 \leq \epsilon<1$ and $0<\eta<1-\epsilon$,

$$
S_{\epsilon}\left(X_{1}, \ldots, X_{m} \mid Z\right) \leq \frac{1}{|\pi|-1}\left[-\log \beta_{\epsilon+\eta}(\mathrm{P}, \mathrm{Q})+|\pi| \log (1 / \eta)\right]
$$

where

$$
\mathrm{Q}\left(x_{1}, \ldots, x_{m} \mid z\right)=\prod_{i=1}^{k} \mathrm{Q}\left(x_{\pi_{i}} \mid z\right)
$$

For two parties:
$S_{\epsilon}\left(X_{1}, X_{2} \mid Z\right) \leq-\log \beta_{\epsilon+\eta}\left(\mathrm{P}_{X_{1} X_{2} Z}, \mathrm{P}_{X_{1} \mid Z} \mathrm{P}_{X_{2} \mid Z} \mathrm{P}_{Z}\right)+2 \log (1 / \eta)$

Connections to meta-converse of Polyanskiy, Poor, and Vérdu

Implications of the Upper Bound

1. Strong Converse for Secret Key Agreement

[Maurer '93] [Ahlswede-Csiszár '93] [Csiszar-Narayan ‘04]
Consider IID observations $X_{1}, \ldots, X_{m} \equiv X_{1}^{n}, \ldots, X_{m}^{n}, Z=\emptyset$
(ϵ, δ)-Secret Key Capacity: $C_{\epsilon, \delta}:=\liminf _{n} \frac{1}{n} S_{\epsilon, \delta}\left(X_{1}^{n}, \ldots, X_{m}^{n}\right)$
Secret Key Capacity: $\quad C:=\inf _{\epsilon, \delta} C_{\epsilon, \delta}$.

1. Strong Converse for Secret Key Agreement

[Maurer '93] [Ahlswede-Csiszár '93] [Csiszar-Narayan '04]
Consider IID observations $X_{1}, \ldots, X_{m} \equiv X_{1}^{n}, \ldots, X_{m}^{n}, Z=\emptyset$
(ϵ, δ)-Secret Key Capacity: $C_{\epsilon, \delta}:=\liminf _{n} \frac{1}{n} S_{\epsilon, \delta}\left(X_{1}^{n}, \ldots, X_{m}^{n}\right)$ Secret Key Capacity: $\quad C:=\inf _{\epsilon, \delta} C_{\epsilon, \delta}$.

Theorem

For $0<\epsilon, \delta$ with $\epsilon+\delta<1$,

$$
C_{\epsilon, \delta}=C,
$$

and for all $\epsilon+\delta \geq 1$,

$$
C_{\epsilon, \delta}=\infty
$$

2. Information Theoretically Secure OT

[Even-Goldreich-Lempel 85], ..., [Nascimento-Winters 06]

- Reliability: $\mathrm{P}\left(\hat{K} \neq K_{B}\right) \leq \epsilon$
- Security 1: $\frac{1}{2}\left\|\mathrm{P}_{B K_{0} K_{1} X_{1} \mathbf{F}}-\mathrm{P}_{B} \times \mathrm{P}_{K_{0} K_{1} X_{1} \mathbf{F}}\right\|_{1} \leq \delta_{1}$
- Security 2: $\frac{1}{2}\left\|\mathrm{P}_{K_{\bar{B}} B X_{2} \mathbf{F}}-\mathrm{P}_{K_{\bar{B}}} \times \mathrm{P}_{B X_{2} \mathbf{F}}\right\|_{1} \leq \delta_{2}$

2. Information Theoretically Secure OT

[Even-Goldreich-Lempel 85], ..., [Nascimento-Winters 06]

- Reliability: $\mathrm{P}\left(\hat{K} \neq K_{B}\right) \leq \epsilon$
- Security 1: $\frac{1}{2}\left\|\mathrm{P}_{B K_{0} K_{1} X_{1} \mathbf{F}}-\mathrm{P}_{B} \times \mathrm{P}_{K_{0} K_{1} X_{1} \mathbf{F}}\right\|_{1} \leq \delta_{1}$
- Security 2: $\frac{1}{2}\left\|\mathrm{P}_{K_{\bar{B}} B X_{2} \mathbf{F}}-\mathrm{P}_{K_{\bar{B}}} \times \mathrm{P}_{B X_{2} \mathbf{F}}\right\|_{1} \leq \delta_{2}$

How large can the length l of OT be?

Bounds on the Efficiency of OT

Theorem (Reduction of SK Agreement to OT)

For an $\left(\epsilon, \delta_{1}, \delta_{2}\right)$-OT of length l

$$
l \lesssim \min \left\{S_{\epsilon+\delta_{1}+2 \delta_{2}}\left(X_{1}, X_{2}\right), S_{\epsilon+\delta_{1}+2 \delta_{2}}\left(X_{1},\left(X_{1}, X_{2}\right) \mid X_{2}\right)\right\}
$$

Bounds on the Efficiency of OT

Theorem (Reduction of SK Agreement to OT)

For an $\left(\epsilon, \delta_{1}, \delta_{2}\right)$-OT of length l

$$
l \lesssim \min \left\{S_{\epsilon+\delta_{1}+2 \delta_{2}}\left(X_{1}, X_{2}\right), S_{\epsilon+\delta_{1}+2 \delta_{2}}\left(X_{1},\left(X_{1}, X_{2}\right) \mid X_{2}\right)\right\}
$$

OT Capacity (for IID observations):
Maximum rate (l / n) of OT length (with $\delta_{1 n}, \delta_{2 n} \rightarrow 0$)

$$
C_{\epsilon}\left(X_{1}, X_{2}\right) \leq \min \left\{I\left(X_{1} \wedge X_{2}\right), H\left(X_{1} \mid X_{2}\right)\right\}
$$

"Strong" version of the Ahlswede-Csiszár upper bound

3. Information Theoretic Bit Commitment

Commit

Reveal

Party 2 constructs a test T for the hypothesis: "Secret is k "

Recovery: $\mathrm{P}\left(T\left(K, X_{1}, X_{2}, \mathbf{F}\right)=1\right) \leq \epsilon$
Security: $\frac{1}{2}\left\|\mathrm{P}_{K X_{2} \mathbf{F}}-\mathrm{P}_{K} \times \mathrm{P}_{X_{2} \mathbf{F}}\right\|_{1} \leq \delta_{1}$
Binding: $\mathrm{P}\left(T\left(K^{\prime}, X_{1}^{\prime}, X_{2}, \mathbf{F}\right)=0, K^{\prime} \neq K\right) \leq \delta_{2}$

3. Information Theoretic Bit Commitment

Commit

Reveal

Party 2 constructs a test T for the hypothesis: "Secret is k "

Recovery: $\mathrm{P}\left(T\left(K, X_{1}, X_{2}, \mathbf{F}\right)=1\right) \leq \epsilon$
Security: $\frac{1}{2}\left\|\mathrm{P}_{K X_{2} \mathbf{F}}-\mathrm{P}_{K} \times \mathrm{P}_{X_{2} \mathbf{F}}\right\|_{1} \leq \delta_{1}$
Binding: $\mathrm{P}\left(T\left(K^{\prime}, X_{1}^{\prime}, X_{2}, \mathbf{F}\right)=0, K^{\prime} \neq K\right) \leq \delta_{2}$
How large can the length l of BC be?

Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an $\left(\epsilon, \delta_{1}, \delta_{2}\right)-B C$ of length l,

$$
l \lesssim S_{\epsilon+\delta_{1}+\delta_{2}}\left(X_{1},\left(X_{1}, X_{2}\right) \mid X_{2}\right)
$$

Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an $\left(\epsilon, \delta_{1}, \delta_{2}\right)-B C$ of length l,

$$
l \lesssim S_{\epsilon+\delta_{1}+\delta_{2}}\left(X_{1},\left(X_{1}, X_{2}\right) \mid X_{2}\right)
$$

Efficiency of reduction of BC to OT
Given n-length OT: $X_{1} \equiv K_{0}, K_{1} \quad X_{2} \equiv K_{B}, B$.
The possible length l of $B C$ is bounded as:

$$
l \leq n+O\left(\log \left(1-\epsilon-\delta_{1}-\delta_{2}\right)\right)
$$

Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an $\left(\epsilon, \delta_{1}, \delta_{2}\right)-B C$ of length l,

$$
l \lesssim S_{\epsilon+\delta_{1}+\delta_{2}}\left(X_{1},\left(X_{1}, X_{2}\right) \mid X_{2}\right)
$$

Efficiency of reduction of BC to OT
Given n-length OT: $X_{1} \equiv K_{0}, K_{1} \quad X_{2} \equiv K_{B}, B$.
The possible length l of $B C$ is bounded as:

$$
l \leq n+O\left(\log \left(1-\epsilon-\delta_{1}-\delta_{2}\right)\right)
$$

Improves a bound of [Ranellucci et. al. 11]

Bound on the Efficiency of BC

Theorem (Reduction of SK Agreement to BC)

For an $\left(\epsilon, \delta_{1}, \delta_{2}\right)-B C$ of length l,

$$
l \lesssim S_{\epsilon+\delta_{1}+\delta_{2}}\left(X_{1},\left(X_{1}, X_{2}\right) \mid X_{2}\right)
$$

[Nascimento-Winters-Imai 03] BC capacity $C=H\left(X_{1} \mid X_{2}\right)$
Strong converse for BC capacity

$$
C_{\epsilon, \delta_{1}, \delta_{2}}\left(X_{1}, X_{2}\right) \leq H\left(X_{1} \mid X_{2}\right), \quad \epsilon+\delta_{1}+\delta_{2}<1
$$

4. Secure Computing with Trusted Parties

Parties are trusted, the communication channel is not

Party i computes $G_{i}\left(X_{i}, \mathbf{F}\right) ; \quad$ Eavesdropper observes \mathbf{F}, Z
A function g is (ϵ, δ)-secure computable if
$\mathrm{P}\left(G_{1}=G_{2}=\ldots=G_{m}=g\left(X_{1}, \ldots, X_{m}\right)\right) \geq 1-\epsilon, \quad$:Recoverability

$$
\frac{1}{2}\left\|\mathrm{P}_{G \mathbf{F} Z}-\mathrm{P}_{G} \times \mathrm{P}_{\mathbf{F} Z}\right\|_{1} \leq \delta, \quad: \text { Secrecy }
$$

Characterization of securely computable functions

[Tyagi-Gupta-Narayan '11] IID case with $Z=\emptyset$
A function g is secure computable (asymptotically) iff

$$
H(G) \leq C
$$

Characterization of securely computable functions

[Tyagi-Gupta-Narayan '11] IID case with $Z=\emptyset$
A function g is secure computable (asymptotically) iff

$$
H(G) \leq C
$$

A single-shot necessary condition

Theorem

If a function g is (ϵ, δ)-secure computable, then

$$
H_{\min }^{\xi}\left(\mathrm{P}_{G}\right) \lesssim \frac{-1}{|\pi|-1} \log \beta_{\epsilon+\delta+2 \xi}\left(\mathrm{P}_{X_{\mathcal{M}} Z}, \mathrm{Q}_{X_{\mathcal{M}} Z}\right)
$$

where

$$
Q\left(x_{1}, \ldots, x_{m} \mid z\right)=\prod_{i=1}^{k} Q\left(x_{\pi_{i}} \mid z\right)
$$

In Closing...

We derived converse results for IT cryptography, which are valid for the single-shot case

In Closing...

We derived converse results for IT cryptography, which are valid for the single-shot case

Key idea: Reduction of hypothesis testing to crypto primitives

In Closing...

We derived converse results for IT cryptography, which are valid for the single-shot case

Key idea: Reduction of hypothesis testing to crypto primitives

By observing the outputs of any IT secure crypto primitive we can measure the correlation in the observations

In Closing...

We derived converse results for IT cryptography, which are valid for the single-shot case

Key idea: Reduction of hypothesis testing to crypto primitives

By observing the outputs of any IT secure crypto primitive we can measure the correlation in the observations
H. Tyagi and S. Watanabe, " Converses for secret key agreement and secure computing," arXiv:1404.5715, 2014

In Closing...

We derived converse results for IT cryptography, which are valid for the single-shot case

Key idea: Reduction of hypothesis testing to crypto primitives

By observing the outputs of any IT secure crypto primitive we can measure the correlation in the observations
H. Tyagi and S. Watanabe, " Converses for secret key agreement and secure computing," arXiv:1404.5715, 2014

How close do efficient schemes come to these performance bounds??

