Higher Order Masking of Look-up Tables

Jean-Sébastien Coron

University of Luxembourg
EUROCRYPT, 2014-05-14

Side-channel Attacks

Cryptographic device
(e.g., smart card and reader)

Differential Power Analysis [KJJ99]

Group by predicted SBox output bit

Average trace

Masking Countermeasure

- Let x be some variable in a block-cipher.
- Masking countermeasure: generate a random r, and manipulate the masked value x^{\prime}

$$
x^{\prime}=x \oplus r
$$

instead of x.

- r is random $\Rightarrow x^{\prime}$ is random
\Rightarrow power consumption of x^{\prime} is random

\Rightarrow no information about x is leaked

Masking Countermeasure

- How do we compute with $x^{\prime}=x \oplus r$ instead of x ?
- Linear operation $f(x)$ (e.g. MixColumns in AES): easy

$$
f\left(x^{\prime}\right)=f(x) \oplus f(r)
$$

- We compute $f\left(x^{\prime}\right)$ and $f(r)$ separately.
- $f(x)$ is now masked with $f(r)$ instead of r.
- Non-linear operations (SBOX): randomized table [CJRR99]

Randomized Table Countermeasure [CJRR99]

$S(u)$
Original table in ROM

$$
T(u)=S(u \oplus r) \oplus s
$$

Randomized table in RAM

Randomized Table Countermeasure [CJRR99]

$$
S(u)
$$

Original table in ROM

$$
T(u)=S(u \oplus r) \oplus s
$$

Randomized table in RAM

Second-order Attack

- Second-order attack:

- Requires more curves but can be practical

Higher-order masking

- Solution: n shares instead of 2 :

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

- Any subset of $n-1$ shares is uniformly and independently distributed
- If we probe at most $n-1$ shares x_{i}, we learn nothing about $x \Rightarrow$ secure against a DPA attack of order $n-1$.
- Linear operations: still easy
- Compute the $f\left(x_{i}\right)$ separately

$$
f(x)=f\left(x_{1}\right) \oplus f\left(x_{2}\right) \oplus \cdots \oplus f\left(x_{n}\right)
$$

Higher-order computation of SBoxes

- SBox computation ?
- We have input shares x_{1}, \ldots, x_{n}, with

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

- We must output shares y_{1}, \ldots, y_{n}, such that

$$
S(x)=y_{1} \oplus y_{2} \oplus \cdots \oplus y_{n}
$$

- without leaking information about x.
- This talk: first generalization of the previous randomized table countermeasure to n shares.

Existing Higher Order Countermeasure

- Ishai-Sahai-Wagner private circuit [ISW03]
- Shows how to transform any boolean circuit C into a circuit of size $\mathcal{O}\left(|C| \cdot t^{2}\right)$ perfectly secure against t probes.
- Rivain-Prouff (CHES 2010) countermeasure for AES:

$$
S(x)=x^{254} \in \mathbb{F}_{2^{8}}
$$

- Secure multiplication based on [ISW03]:

$$
z=x y=\left(\bigoplus_{i=1}^{n} x_{i}\right) \cdot\left(\bigoplus_{i=1}^{n} y_{i}\right)=\bigoplus_{1 \leq i, j \leq n} x_{i} y_{j}
$$

- Provably secure against t-th order DPA with $n \geq 2 t+1$ shares.

Existing Higher Order Countermeasures

- Carlet et al. (FSE 2012) countermeasure for any Sbox.
- Lagrange interpolation

$$
S(x)=\sum_{i=0}^{2^{k}-1} \alpha_{i} \cdot x^{i}
$$

over $\mathbb{F}_{2^{k}}$, for constant coefficients $\alpha_{i} \in \mathbb{F}_{2^{k}}$.

Existing Higher Order Countermeasures

- Carlet et al. (FSE 2012) countermeasure for any Sbox.
- Lagrange interpolation

$$
S(x)=\sum_{i=0}^{2^{k}-1} \alpha_{i} \cdot x^{i}
$$

over $\mathbb{F}_{2^{k}}$, for constant coefficients $\alpha_{i} \in \mathbb{F}_{2^{k}}$.

- This talk: alternative to Rivain-Prouff and Carlet et al. countermeasures
- Generalization of the classical randomized table countermeasure.
- No field operations, only table recomputation.

Randomized Table Countermeasure [CJRR99]

$S(u)$
Original table in ROM

$$
T(u)=S(u \oplus r) \oplus s
$$

Randomized table in RAM

Randomized Table Countermeasure [CJRR99]

$$
S(u)
$$

Original table in ROM

$$
T(u)=S(u \oplus r) \oplus s
$$

Randomized table in RAM

First attempt: Schramm and Paar countermeasure [SP06]

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

First attempt: Schramm and Paar countermeasure [SP06]

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

$$
T(u)=S\left(u \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1}
$$

First attempt: Schramm and Paar countermeasure [SP06]

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

$$
T(u)=S\left(u \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1}
$$

Third-order Attack for any n

- Final randomized table:

$T(0)$	$=S\left(0 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1}$
$T(1)$	$=S\left(1 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1}$
.	

Third-order Attack for any n

- Final randomized table:

$$
\begin{array}{c|c}
T(0) & =S\left(0 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1} \\
T(1) & =S\left(1 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1} \\
= & S\left(0 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus S\left(1 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \\
\vdots & \text { only depends on } x_{1} \oplus \cdots \oplus x_{n-1}, \\
& \text { also probe } x_{n} \Rightarrow \text { 3rd order attack. }
\end{array}
$$

Third-order Attack for any n

- Final randomized table:

$$
\begin{array}{c|c}
T(0) \\
T(1) & =S\left(0 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1} \\
\oplus & S\left(1 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus s_{1} \oplus \cdots \oplus s_{n-1} \\
\vdots & \\
& S\left(0 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \oplus S\left(1 \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right) \\
& \text { only depends on } x_{1} \oplus \cdots \oplus x_{n-1}, \\
& \text { also probe } x_{n} \Rightarrow \text { 3rd order attack. }
\end{array}
$$

- For high-order countermeasures, do not reuse the same masks multiple times !
- Using the same mask r is OK only for first-order countermeasures.

New Countermeasure

- This talk: new countermeasure for SBOXes, secure against higher-order attacks:
- Variant of Schramm and Paar countermeasure
- but use different masks for every line of the Sbox
- and refresh the masks between successive shifts of the table.
- Provably secure against t-th order DPA, in the ISW model, with $n \geq 2 t+1$ shares.
- Alternative to Rivain-Prouff and Carlet et al. countermeasures based on finite-fields operations.

Initial table with n shares

- Every line of the SBox is initially randomly shared among n shares, independently for every line.

$$
\begin{array}{|c|c}
\left(s_{00,1}, \ldots, s_{00, n}\right) & S(00) \\
\vdots & \\
\left(s_{u, 1}, \ldots, s_{u, n}\right) & S(u) \\
\vdots & \\
\left(s_{\mathrm{FF}, 1}, \ldots, s_{\mathrm{FF}, n}\right) & S(\mathrm{FF})
\end{array}
$$

Original shared table

- Equivalent to having n randomized tables instead of 1 .

Initial table with n shares

- Every line of the SBox is initially randomly shared among n shares, independently for every line.

$\left(s_{00,1}, \ldots, s_{00, n}\right)$	$S(00)$
$\left(s_{u, 1}, \ldots, s_{u, n}\right)$	$S(u)$
$\left(s_{\mathrm{FF}, 1}, \ldots, s_{\mathrm{FF}, n}\right)$	$S(\mathrm{FF})$

Original shared table

- Equivalent to having n randomized tables instead of 1 .
- The lines of the table are then progressively shifted by x_{1}, x_{2}, \ldots, x_{n-1}, as in Schramm and Paar, but with a RefreshMask after every shift.

Iterative input shift by x_{i}

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

Original shared table

Iterative input shift by x_{i}

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

$\left(s_{00,1}, \ldots, s_{00, n}\right)$	$S(00)$			
$\left(s_{u, 1}, \ldots, s_{u, n}\right)$	$S(u)$	x_{i}-shift mask refresh	$\left(s_{u, 1}^{(i)}, \ldots, s_{u, n}^{(i)}\right)$	$S\left(u \oplus x_{1} \oplus \cdots \oplus x_{i}\right)$
$\left(s_{\text {FF }, 1}, \ldots, s_{\text {FF }, n}\right)$	$S(\mathrm{FF})$.	

Original shared table

Final shared table

Iterative input shift by x_{i}

$$
x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{n}
$$

$\left(s_{00,1}, \ldots, s_{00, n}\right)$	$S(00)$			$S\left(u \oplus x_{1} \oplus \cdots \oplus x_{i}\right)$
$\left(s_{u, 1}, \ldots, s_{u, n}\right)$	$S(u)$	x_{i}-shift mask refresh	$\left(s_{u, 1}^{(i)}, \ldots, s_{u, n}^{(i)}\right)$	
$\left(s_{\text {FF }, 1}, \ldots, s_{\text {FF, } n}\right)$	$S(\mathrm{FF})$			

Original shared table

Final shared table

Final randomized table

- In the final shared table, the inputs are shifted by $x_{1} \oplus \cdots \oplus x_{n-1}$:

Final shared table

Final randomized table

- In the final shared table, the inputs are shifted by $x_{1} \oplus \cdots \oplus x_{n-1}$:

Final shared table

- The n output shares $T\left(x_{n}\right)=\left(s_{x_{n}, 1}^{(n-1)}, \ldots, s_{x_{n}, n}^{(n-1)}\right)$ correspond to the output $S(x)$

Mask Refreshing

- Required property: any subset of $n-1$ output shares z_{i} is uniformly and independently distributed.

Why are the mask refreshing necessary ?

- Without mask refreshing:

Original shared table

Final shared table

Why are the mask refreshing necessary ?

- Without mask refreshing:

Final shared table

Why are the mask refreshing necessary ?

- Without mask refreshing:

Final shared table

- The mask refreshing prevents from correlating shares between different shifts of the tables.

Full Algorithm

Algorithm 1 Masked computation of $y=S(x)$

Input: x_{1}, \ldots, x_{n} such that $x=x_{1} \oplus \cdots \oplus x_{n}$
Output: y_{1}, \ldots, y_{n} such that $y=S(x)=y_{1} \oplus \cdots \oplus y_{n}$
1: for all $u \in\{0,1\}^{k}$ do
2: $T(u) \leftarrow(S(u), 0, \ldots, 0) \in\left(\{0,1\}^{k^{\prime}}\right)^{n} \quad \triangleright \oplus(T(u))=S(u)$
: end for
4: for $i=1$ to $n-1$ do
5: \quad for all $u \in\{0,1\}^{k}$ do
for $j=1$ to n do $T^{\prime}(u)[j] \leftarrow T\left(u \oplus x_{i}\right)[j] \quad \triangleright T^{\prime}(u) \leftarrow T\left(u \oplus x_{i}\right)$
end for
for all $u \in\{0,1\}^{k}$ do
$T(u) \leftarrow \operatorname{Refresh} \operatorname{Masks}\left(T^{\prime}(u)\right) \quad \triangleright \oplus(T(u))=S\left(u \oplus x_{1} \oplus \cdots \oplus x_{i}\right)$
end for
11: end for
$\triangleright \oplus(T(u))=S\left(u \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right)$ for all $u \in\{0,1\}^{k}$.
12: $\left(y_{1}, \ldots, y_{n}\right) \leftarrow \operatorname{RefreshMasks}\left(T\left(x_{n}\right)\right) \quad \triangleright \oplus\left(T\left(x_{n}\right)\right)=S(x)$
13: return y_{1}, \ldots, y_{n}

Mask refreshing

Algorithm 2 RefreshMasks

Input: z_{1}, \ldots, z_{n} such that $z=z_{1} \oplus \cdots \oplus z_{n}$
Output: z_{1}, \ldots, z_{n} such that $z=z_{1} \oplus \cdots \oplus z_{n}$
1: for $i=2$ to n do
2: $\quad t m p \leftarrow\{0,1\}^{k^{\prime}}$
3: $\quad z_{1} \leftarrow z_{1} \oplus t m p$
4: $\quad z_{i} \leftarrow z_{i} \oplus t m p$
5: end for
6: return z_{1}, \ldots, z_{n}

Asymptotic Complexity

- Asymptotic complexity for k-bit SBox and n shares:

Countermeasure	Time comp.	Memory comp.
Carlet et al.	$\mathcal{O}\left(2^{k / 2} \cdot n^{2}\right)$	$\mathcal{O}\left(2^{k / 2} \cdot n\right)$
New countermeasure.	$\mathcal{O}\left(2^{k} \cdot n^{2}\right)$	$\mathcal{O}\left(2^{k} \cdot n\right)$
New count. (large register)	$\mathcal{O}\left(2^{k} / 2 \cdot n^{2}\right)$	$\mathcal{O}\left(2^{k} \cdot n\right)$

Asymptotic Complexity

- Asymptotic complexity for k-bit SBox and n shares:

Countermeasure	Time comp.	Memory comp.
Carlet et al.	$\mathcal{O}\left(2^{k / 2} \cdot n^{2}\right)$	$\mathcal{O}\left(2^{k / 2} \cdot n\right)$
New countermeasure.	$\mathcal{O}\left(2^{k} \cdot n^{2}\right)$	$\mathcal{O}\left(2^{k} \cdot n\right)$
New count. (large register)	$\mathcal{O}\left(2^{k / 2} \cdot n^{2}\right)$	$\mathcal{O}\left(2^{k} \cdot n\right)$

- Large register variant: pack multiple Sbox outputs in a single register
- For DES, pack 8 output 4-bit nibbles into a 32-bit register
- Running time divided by 8

ISW security model

- Simulation framework of [ISW03]:

ISW security model

- Simulation framework of [ISW03]:

ISW security model

- Simulation framework of [ISW03]:

- Show that any t probes can be perfectly simulated from at most $n-1$ of the $s k_{i}$'s.
- Those $n-1$ shares $s k_{i}$ are initially uniformly and independently distributed.
- \Rightarrow the adversary learns nothing from the t probes, since he could perfectly simulate those t probes by himself.

Security of high-order table recomputation

Theorem
The table recomputation countermeasure is secure against t probes in the ISW model, for $n \geq 2 t+1$.

Proof sketch

Initial table Probes

Final table

Table look-up

$$
\left(s_{u, 1}^{(n-1)}, \ldots, s_{u, n}^{(n-1)}\right) \quad S\left(u \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right)
$$

$$
T\left(x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad S(x)
$$

Proof sketch

Initial table

$$
\left(s_{u, 1}, \ldots, s_{u, n}\right) \quad S(u)
$$

Probes

Final table

Table look-up

$$
\left(s_{u, 1}^{(n-1)}, \ldots, s_{u, n}^{(n-1)}\right) \quad S\left(u \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right)
$$

$$
T\left(x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad S(x)
$$

Proof sketch

Initial table

$$
\left(s_{u, 1}, \ldots, s_{u, n}\right) \quad S(u)
$$

Final table
$\left(s_{u, 1}^{(n-1)}, \ldots, s_{u, n}^{(n-1)}\right) \quad S\left(u \oplus x_{1} \oplus \cdots \oplus x_{n-1}\right)$
Table look-up
$T\left(x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right) \quad S(x)$

Protecting a full block-cipher

- Adaptive model of [ISW03]:
- The adversary can move its t probes between successive executions of the block-cipher.
- $n \geq 4 t+1$ are sufficient to guarantee security in the adaptive model

Protecting a full block-cipher

- Improvement: $n \geq 2 t+1$ are sufficient to guarantee security in the adaptive model

Protecting a full block-cipher

- Improvement: $n \geq 2 t+1$ are sufficient to guarantee security in the adaptive model

Execution 1
 Execution 2

- Optimal: \mathcal{A} can probe t shares $s k_{i}$ at the end of one execution and t shares $s k_{i}$ at the beginning of the next.

Performances for AES

	t	n	Time (ms)	Penalty
AES, unmasked			0.0018	1
AES, Rivain-Prouff	1	3	0.092	50
AES, table recomputation	1	3	0.80	439
AES, Rivain-Prouff	2	5	0.18	96
AES, table recomputation	2	5	2.2	1205
AES, Rivain-Prouff	3	7	0.31	171
AES, table recomputation	3	7	4.4	2411
AES, Rivain-Prouff	4	9	0.51	276
AES, table recomputation	4	9	7.3	4003

- Table recomputation an order of magnitude slower than RP
- RP can take advantage of the special structure of the AES SBox (only 4 mults in $\mathbb{F}_{2^{8}}$).

Performances for DES

	t	n	Time (ms)	Penalty
DES, unmasked			0.010	1
DES, Carlet et al.	1	3	0.47	47
DES, table recomputation	1	3	0.31	31
DES, Carlet et al.	2	5	0.78	79
DES, table recomputation	2	5	0.59	59
DES, Carlet et al.	3	7	1.3	129
DES, table recomputation	3	7	0.90	91
DES, Carlet et al.	4	9	1.9	189
DES, table recomputation	4	9	1.4	142

- For DES the performances are similar
- http://github.com/coron/htable/

Questions ?

