
Higher Order Masking of Look-up Tables

Jean-Sébastien Coron

University of Luxembourg

EUROCRYPT, 2014-05-14

Side-channel Attacks

Differential Power Analysis [KJJ99]

Average trace

Differential trace

Group by predicted

SBox output bit

1 1 1

0 0 0

Masking Countermeasure

• Let x be some variable in a block-cipher.

• Masking countermeasure: generate a random r , and
manipulate the masked value x ′

x ′ = x ⊕ r

instead of x .

• r is random ⇒ x ′ is random
⇒ power consumption of x ′ is random

⇒ no information about x is leaked

Masking Countermeasure

• How do we compute with x ′ = x ⊕ r instead of x ?

• Linear operation f (x) (e.g. MixColumns in AES): easy

f (x ′) = f (x)⊕ f (r)

• We compute f (x ′) and f (r) separately.
• f (x) is now masked with f (r) instead of r .

• Non-linear operations (SBOX): randomized table [CJRR99]

Randomized Table Countermeasure [CJRR99]

S(0)

S(FF)

S(x)

...

...

x

S(u)

Original table in ROM

...

...

x ′
=

x ⊕ r

T (x ′) = S
(
(x⊕r)⊕r

)
⊕s

= S(x)⊕ s

T (u) = S(u ⊕ r)⊕ s

Randomized table in RAM

r -shift

S(0)⊕ s
...

Randomized Table Countermeasure [CJRR99]

S(0)

S(FF)

S(x)

...

...

x

S(u)

Original table in ROM

...

...

x ′
=

x ⊕ r

T (x ′) = S
(
(x⊕r)⊕r

)
⊕s

= S(x)⊕ s

T (u) = S(u ⊕ r)⊕ s

Randomized table in RAM

r -shift

S(0)⊕ s
...

Second-order Attack

• Second-order attack:

E (x ′) E (r)

f (E (x ′),E (r)) correlated with x = x ′ ⊕ r

• Requires more curves but can be practical

Higher-order masking

• Solution: n shares instead of 2:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

• Any subset of n − 1 shares is uniformly and independently
distributed

• If we probe at most n − 1 shares xi , we learn nothing
about x ⇒ secure against a DPA attack of order n − 1.

• Linear operations: still easy
• Compute the f (xi) separately

f (x) = f (x1)⊕ f (x2)⊕ · · · ⊕ f (xn)

Higher-order computation of SBoxes

• SBox computation ?

• We have input shares x1, . . . , xn, with

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

• We must output shares y1, . . . , yn, such that

S(x) = y1 ⊕ y2 ⊕ · · · ⊕ yn

• without leaking information about x .

• This talk: first generalization of the previous randomized
table countermeasure to n shares.

Existing Higher Order Countermeasure

• Ishai-Sahai-Wagner private circuit [ISW03]
• Shows how to transform any boolean circuit C into a

circuit of size O(|C | · t2) perfectly secure against t
probes.

• Rivain-Prouff (CHES 2010) countermeasure for AES:

S(x) = x254 ∈ F28

• Secure multiplication based on [ISW03]:

z = xy =

(
n

⊕
i=1

xi

)
·
(

n

⊕
i=1

yi

)
= ⊕

1≤i ,j≤n
xiyj

• Provably secure against t-th order DPA with n ≥ 2t + 1
shares.

Existing Higher Order Countermeasures

• Carlet et al. (FSE 2012) countermeasure for any Sbox.
• Lagrange interpolation

S(x) =
2k−1∑
i=0

αi · x i

over F2k , for constant coefficients αi ∈ F2k .

• This talk: alternative to Rivain-Prouff and Carlet et al.
countermeasures

• Generalization of the classical randomized table
countermeasure.

• No field operations, only table recomputation.

Existing Higher Order Countermeasures

• Carlet et al. (FSE 2012) countermeasure for any Sbox.
• Lagrange interpolation

S(x) =
2k−1∑
i=0

αi · x i

over F2k , for constant coefficients αi ∈ F2k .

• This talk: alternative to Rivain-Prouff and Carlet et al.
countermeasures

• Generalization of the classical randomized table
countermeasure.

• No field operations, only table recomputation.

Randomized Table Countermeasure [CJRR99]

S(0)

S(FF)

S(x)

...

...

x

S(u)

Original table in ROM

...

...

x ′
=

x ⊕ r

T (x ′) = S
(
(x⊕r)⊕r

)
⊕s

= S(x)⊕ s

T (u) = S(u ⊕ r)⊕ s

Randomized table in RAM

r -shift

S(0)⊕ s
...

Randomized Table Countermeasure [CJRR99]

S(0)

S(FF)

S(x)

...

...

x

S(u)

Original table in ROM

...

...

x ′
=

x ⊕ r

T (x ′) = S
(
(x⊕r)⊕r

)
⊕s

= S(x)⊕ s

T (u) = S(u ⊕ r)⊕ s

Randomized table in RAM

r -shift

S(0)⊕ s
...

First attempt: Schramm and Paar countermeasure [SP06]
x = x1 ⊕ x2 ⊕ · · · ⊕ xn

S(0)

S(FF)

...

S(u)
Original table

x1-shift

s1-mask
...

S(u ⊕ x1)⊕ s1

x2-shift

s2-mask
...

S(u⊕x1⊕x2)⊕s1⊕s2

xi -shift

si -mask

T (u) = S(u⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1
Final randomized table

xn = x⊕x1⊕· · ·⊕xn−1 T (xn) = S(x)⊕s1⊕· · ·⊕sn−1

First attempt: Schramm and Paar countermeasure [SP06]
x = x1 ⊕ x2 ⊕ · · · ⊕ xn

S(0)

S(FF)

...

S(u)
Original table

x1-shift

s1-mask
...

S(u ⊕ x1)⊕ s1

x2-shift

s2-mask
...

S(u⊕x1⊕x2)⊕s1⊕s2

xi -shift

si -mask

T (u) = S(u⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1
Final randomized table

xn = x⊕x1⊕· · ·⊕xn−1 T (xn) = S(x)⊕s1⊕· · ·⊕sn−1

First attempt: Schramm and Paar countermeasure [SP06]
x = x1 ⊕ x2 ⊕ · · · ⊕ xn

S(0)

S(FF)

...

S(u)
Original table

x1-shift

s1-mask
...

S(u ⊕ x1)⊕ s1

x2-shift

s2-mask
...

S(u⊕x1⊕x2)⊕s1⊕s2

xi -shift

si -mask

T (u) = S(u⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1
Final randomized table

xn = x⊕x1⊕· · ·⊕xn−1 T (xn) = S(x)⊕s1⊕· · ·⊕sn−1

Third-order Attack for any n

• Final randomized table:

T (0) = S(0⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1

T (1) = S(1⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1

...

⊕

=
S(0⊕x1⊕· · ·⊕xn−1)⊕ S(1⊕x1⊕· · ·⊕xn−1)

only depends on x1⊕· · ·⊕xn−1,

also probe xn ⇒ 3rd order attack.

• For high-order countermeasures, do not reuse the same
masks multiple times !

• Using the same mask r is OK only for first-order
countermeasures.

Third-order Attack for any n

• Final randomized table:

T (0) = S(0⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1

T (1) = S(1⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1

...

⊕

=
S(0⊕x1⊕· · ·⊕xn−1)⊕ S(1⊕x1⊕· · ·⊕xn−1)

only depends on x1⊕· · ·⊕xn−1,

also probe xn ⇒ 3rd order attack.

• For high-order countermeasures, do not reuse the same
masks multiple times !

• Using the same mask r is OK only for first-order
countermeasures.

Third-order Attack for any n

• Final randomized table:

T (0) = S(0⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1

T (1) = S(1⊕x1⊕· · ·⊕xn−1)⊕s1⊕· · ·⊕sn−1

...

⊕

=
S(0⊕x1⊕· · ·⊕xn−1)⊕ S(1⊕x1⊕· · ·⊕xn−1)

only depends on x1⊕· · ·⊕xn−1,

also probe xn ⇒ 3rd order attack.

• For high-order countermeasures, do not reuse the same
masks multiple times !

• Using the same mask r is OK only for first-order
countermeasures.

New Countermeasure

• This talk: new countermeasure for SBOXes, secure against
higher-order attacks:

• Variant of Schramm and Paar countermeasure
• but use different masks for every line of the Sbox
• and refresh the masks between successive shifts of the

table.

• Provably secure against t-th order DPA, in the ISW model,
with n ≥ 2t + 1 shares.

• Alternative to Rivain-Prouff and Carlet et al.
countermeasures based on finite-fields operations.

Initial table with n shares

• Every line of the SBox is initially randomly shared among n
shares, independently for every line.

(su,1, . . . , su,n)

(s00,1, . . . , s00,n)

(sFF,1, . . . , sFF,n)

S(u)

S(00)

S(FF)

...

...

Original shared table

• Equivalent to having n randomized tables instead of 1.

• The lines of the table are then progressively shifted by x1, x2,
. . . , xn−1, as in Schramm and Paar, but with a RefreshMask
after every shift.

Initial table with n shares

• Every line of the SBox is initially randomly shared among n
shares, independently for every line.

(su,1, . . . , su,n)

(s00,1, . . . , s00,n)

(sFF,1, . . . , sFF,n)

S(u)

S(00)

S(FF)

...

...

Original shared table

• Equivalent to having n randomized tables instead of 1.

• The lines of the table are then progressively shifted by x1, x2,
. . . , xn−1, as in Schramm and Paar, but with a RefreshMask
after every shift.

Iterative input shift by xi

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

(su,1, . . . , su,n)

(s00,1, . . . , s00,n)

(sFF,1, . . . , sFF,n)

S(u)

S(00)

S(FF)

...

...

Original shared table

xi -shift

mask refresh

...

(s
(i)
u,1, . . . , s

(i)
u,n)

...

S(u⊕x1⊕· · ·⊕ xi)

...

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕ xn−1)

Final shared table

xn = x⊕x1⊕· · ·⊕xn−1 (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) S(x)

Iterative input shift by xi

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

(su,1, . . . , su,n)

(s00,1, . . . , s00,n)

(sFF,1, . . . , sFF,n)

S(u)

S(00)

S(FF)

...

...

Original shared table

xi -shift

mask refresh

...

(s
(i)
u,1, . . . , s

(i)
u,n)

...

S(u⊕x1⊕· · ·⊕ xi)

...

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕ xn−1)

Final shared table

xn = x⊕x1⊕· · ·⊕xn−1 (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) S(x)

Iterative input shift by xi

x = x1 ⊕ x2 ⊕ · · · ⊕ xn

(su,1, . . . , su,n)

(s00,1, . . . , s00,n)

(sFF,1, . . . , sFF,n)

S(u)

S(00)

S(FF)

...

...

Original shared table

xi -shift

mask refresh

...

(s
(i)
u,1, . . . , s

(i)
u,n)

...

S(u⊕x1⊕· · ·⊕ xi)

...

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕ xn−1)

Final shared table

xn = x⊕x1⊕· · ·⊕xn−1 (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) S(x)

Final randomized table

• In the final shared table, the inputs are shifted by
x1 ⊕ · · · ⊕ xn−1 :

...

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕ xn−1)

Final shared table

xn = x⊕x1⊕· · ·⊕xn−1 (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) S(x)

• The n output shares T (xn) = (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) correspond

to the output S(x)

Final randomized table

• In the final shared table, the inputs are shifted by
x1 ⊕ · · · ⊕ xn−1 :

...

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕ xn−1)

Final shared table

xn = x⊕x1⊕· · ·⊕xn−1 (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) S(x)

• The n output shares T (xn) = (s
(n−1)
xn,1

, . . . , s
(n−1)
xn,n) correspond

to the output S(x)

Mask Refreshing

z1 z2 z3 zn

z1 z2 z3 zn

r1

r2

rn−1

• Required property: any subset of n − 1 output shares zi is
uniformly and independently distributed.

Why are the mask refreshing necessary ?
• Without mask refreshing:

s0,1 , . . . , s0,n S(00)
...

Original shared table

...

s
(n−1)
0,1 , . . . , s

(n−1)
0,n S(00⊕x1⊕· · ·⊕ xn−1)

Final shared table

If collision, then presumably x1 ⊕ · · · ⊕ xn−1 = 0

also probe xn ⇒ 3rd order attack

• The mask refreshing prevents from correlating shares between
different shifts of the tables.

Why are the mask refreshing necessary ?
• Without mask refreshing:

s0,1 , . . . , s0,n S(00)
...

Original shared table

...

s
(n−1)
0,1 , . . . , s

(n−1)
0,n S(00⊕x1⊕· · ·⊕ xn−1)

Final shared table

If collision, then presumably x1 ⊕ · · · ⊕ xn−1 = 0

also probe xn ⇒ 3rd order attack

• The mask refreshing prevents from correlating shares between
different shifts of the tables.

Why are the mask refreshing necessary ?
• Without mask refreshing:

s0,1 , . . . , s0,n S(00)
...

Original shared table

...

s
(n−1)
0,1 , . . . , s

(n−1)
0,n S(00⊕x1⊕· · ·⊕ xn−1)

Final shared table

If collision, then presumably x1 ⊕ · · · ⊕ xn−1 = 0

also probe xn ⇒ 3rd order attack

• The mask refreshing prevents from correlating shares between
different shifts of the tables.

Full Algorithm

Algorithm 1 Masked computation of y = S(x)

Input: x1, . . . , xn such that x = x1 ⊕ · · · ⊕ xn
Output: y1, . . . , yn such that y = S(x) = y1 ⊕ · · · ⊕ yn
1: for all u ∈ {0, 1}k do

2: T (u)←
(
S(u), 0, . . . , 0) ∈ ({0, 1}k′)n . ⊕

(
T (u)

)
= S(u)

3: end for
4: for i = 1 to n − 1 do
5: for all u ∈ {0, 1}k do
6: for j = 1 to n do T ′(u)[j]← T (u ⊕ xi)[j] . T ′(u)← T (u ⊕ xi)
7: end for
8: for all u ∈ {0, 1}k do
9: T (u)← RefreshMasks

(
T ′(u)

)
. ⊕

(
T (u)

)
= S(u ⊕ x1 ⊕ · · · ⊕ xi)

10: end for
11: end for . ⊕

(
T (u)

)
= S(u ⊕ x1 ⊕ · · · ⊕ xn−1) for all u ∈ {0, 1}k .

12: (y1, . . . , yn)← RefreshMasks
(
T (xn)

)
. ⊕

(
T (xn)

)
= S(x)

13: return y1, . . . , yn

Mask refreshing

Algorithm 2 RefreshMasks

Input: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
Output: z1, . . . , zn such that z = z1 ⊕ · · · ⊕ zn
1: for i = 2 to n do
2: tmp ← {0, 1}k ′

3: z1 ← z1 ⊕ tmp
4: zi ← zi ⊕ tmp
5: end for
6: return z1, . . . , zn

Asymptotic Complexity

• Asymptotic complexity for k-bit SBox and n shares:

Countermeasure Time comp. Memory comp.

Carlet et al. O(2k/2 · n2) O(2k/2 · n)
New countermeasure. O(2k · n2) O(2k · n)

New count. (large register) O(2k/2 · n2) O(2k · n)

• Large register variant: pack multiple Sbox outputs in a single
register

• For DES, pack 8 output 4-bit nibbles into a 32-bit register
• Running time divided by 8

Asymptotic Complexity

• Asymptotic complexity for k-bit SBox and n shares:

Countermeasure Time comp. Memory comp.

Carlet et al. O(2k/2 · n2) O(2k/2 · n)
New countermeasure. O(2k · n2) O(2k · n)

New count. (large register) O(2k/2 · n2) O(2k · n)

• Large register variant: pack multiple Sbox outputs in a single
register

• For DES, pack 8 output 4-bit nibbles into a 32-bit register
• Running time divided by 8

ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n − 1 of the ski ’s.

• Those n− 1 shares ski are initially uniformly and independently
distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.

ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n − 1 of the ski ’s.

• Those n− 1 shares ski are initially uniformly and independently
distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.

ISW security model
• Simulation framework of [ISW03]:

m (sk1, sk2, . . . , skn)

c

Block cipher

t probes Sim

• Show that any t probes can be perfectly simulated from at
most n − 1 of the ski ’s.

• Those n− 1 shares ski are initially uniformly and independently
distributed.

• ⇒ the adversary learns nothing from the t probes, since he
could perfectly simulate those t probes by himself.

Security of high-order table recomputation

Theorem
The table recomputation countermeasure is secure against t probes
in the ISW model, for n ≥ 2t + 1.

Proof sketch
Initial table (su,1, . . . , su,n) S(u)

xi -shift

RefreshMask

(s
(i)
u,1, . . . , s

(i)
u,n) S(u⊕x1⊕· · ·⊕xi)

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕xn−1)

T (xn) = (y1, . . . , yn) S(x)

Final table

Table look-up

Probes

Probes

No probes

Perfect simulation
of any n − 1 shares

without knowing xi

Proof sketch
Initial table (su,1, . . . , su,n) S(u)

xi -shift

RefreshMask

(s
(i)
u,1, . . . , s

(i)
u,n) S(u⊕x1⊕· · ·⊕xi)

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕xn−1)

T (xn) = (y1, . . . , yn) S(x)

Final table

Table look-up

Probes

Probes

No probes

Perfect simulation
of any n − 1 shares

without knowing xi

Proof sketch
Initial table (su,1, . . . , su,n) S(u)

xi -shift

RefreshMask

(s
(i)
u,1, . . . , s

(i)
u,n) S(u⊕x1⊕· · ·⊕xi)

(s
(n−1)
u,1 , . . . , s

(n−1)
u,n) S(u⊕x1⊕· · ·⊕xn−1)

T (xn) = (y1, . . . , yn) S(x)

Final table

Table look-up

Probes

Probes

No probes

Perfect simulation
of any n − 1 shares

without knowing xi

Protecting a full block-cipher
• Adaptive model of [ISW03]:

• The adversary can move its t probes between successive
executions of the block-cipher.

• n ≥ 4t + 1 are sufficient to guarantee security in the
adaptive model

Refresh
ski

m

Block
cipher

c

Initial
random ski

m

Refresh
ski

Block
cipher

c

Execution 1 Execution 2

t probes t probes

Protecting a full block-cipher
• Improvement: n ≥ 2t + 1 are sufficient to guarantee security

in the adaptive model

Initial
random ski

Refresh
ski

Refresh
ski

m

Block
cipher

c

m

Refresh
ski

Block
cipher

c

Execution 1 Execution 2

t probes t probes

• Optimal: A can probe t shares ski at the end of one execution
and t shares ski at the beginning of the next.

Protecting a full block-cipher
• Improvement: n ≥ 2t + 1 are sufficient to guarantee security

in the adaptive model

Initial
random ski

Refresh
ski

Refresh
ski

m

Block
cipher

c

m

Refresh
ski

Block
cipher

c

Execution 1 Execution 2

t probes t probes

• Optimal: A can probe t shares ski at the end of one execution
and t shares ski at the beginning of the next.

Performances for AES

t n Time (ms) Penalty

AES, unmasked 0.0018 1

AES, Rivain-Prouff 1 3 0.092 50

AES, table recomputation 1 3 0.80 439

AES, Rivain-Prouff 2 5 0.18 96

AES, table recomputation 2 5 2.2 1205

AES, Rivain-Prouff 3 7 0.31 171

AES, table recomputation 3 7 4.4 2411

AES, Rivain-Prouff 4 9 0.51 276

AES, table recomputation 4 9 7.3 4003

• Table recomputation an order of magnitude slower than RP
• RP can take advantage of the special structure of the AES

SBox (only 4 mults in F28).

Performances for DES

t n Time (ms) Penalty

DES, unmasked 0.010 1

DES, Carlet et al. 1 3 0.47 47
DES, table recomputation 1 3 0.31 31

DES, Carlet et al. 2 5 0.78 79
DES, table recomputation 2 5 0.59 59

DES, Carlet et al. 3 7 1.3 129
DES, table recomputation 3 7 0.90 91

DES, Carlet et al. 4 9 1.9 189
DES, table recomputation 4 9 1.4 142

• For DES the performances are similar

• http://github.com/coron/htable/

http://github.com/coron/htable/

Questions ?

