Déjà Q: Using Dual Systems to Revisit q-Type Assumptions

Melissa Chase (MSR Redmond)
Sarah Meiklejohn (UC San Diego \rightarrow University College London)

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

- First IBE instantiation [BF01]

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

- First IBE instantiation [BF01]
- Many other breakthroughs have followed [BBS04,GS08,KSW08,LW11,...]

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

- First IBE instantiation [BF01]
- Many other breakthroughs have followed [BBS04,GS08,KSW08,LW11,...]

With great functionality, comes great (ir)responsibility!

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

- First IBE instantiation [BF01]
- Many other breakthroughs have followed [BBS04,GS08,KSW08,LW11,...]

With great functionality, comes great (ir)responsibility!

- First assumption: BDH (given $\left(g^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}\right)$, compute $\mathrm{e}(\mathrm{g}, \mathrm{g})^{\mathrm{abc}}$)

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

- First IBE instantiation [BF01]
- Many other breakthroughs have followed [BBS04,GS08,KSW08,LW11,...]

With great functionality, comes great (ir)responsibility!
\because First assumption: BDH (given $\left(g^{a}, g^{b}, g^{c}\right)$, compute e $(g, g)^{\text {abc }}$)
© Later assumptions: Subgroup Hiding [BGN05], Decision Linear, SXDH

Pairing-based cryptography: a brief history

Historically, pairings have provided great functionality

- First IBE instantiation [BF01]
- Many other breakthroughs have followed [BBS04,GS08,KSW08,LW11,...]

With great functionality, comes great (ir)responsibility!

- First assumption: BDH (given $\left(g^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}\right)$, compute $\mathrm{e}(\mathrm{g}, \mathrm{g})^{\mathrm{abc}}$)
\because Later assumptions: Subgroup Hiding [BGN05], Decision Linear, SXDH

Even later assumptions: q-SDH, q-ADHSDH, q-EDBDH, q-SDH-III, q-SFP, "source group q-parallel BDHE," etc.

Why are q-type assumptions worrisome?

Why are q-type assumptions worrisome?

	IBE universe		
Alice	Fred	Kate	Phil
Bob	George	Louise	Quentin
Charles	Hannah	Melissa	Rachel
Dora	Isabelle	Nicholas	Sarah
Ernie	Julian	Otis	Tristan

Why are q-type assumptions worrisome?

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

- Properties of bilinear groups: subgroup hiding and parameter hiding

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

- Properties of bilinear groups: subgroup hiding and parameter hiding
- Abstract dual systems into three steps

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

- Properties of bilinear groups: subgroup hiding and parameter hiding
- Abstract dual systems into three steps

Apply dual systems directly to variants of the uber-assumption [BBG05,B08]

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

- Properties of bilinear groups: subgroup hiding and parameter hiding
- Abstract dual systems into three steps

Apply dual systems directly to variants of the uber-assumption [BBG05,B08]

- Reduce* to an assumption that holds by a statistical argument

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

- Properties of bilinear groups: subgroup hiding and parameter hiding
- Abstract dual systems into three steps

Apply dual systems directly to variants of the uber-assumption [BBG05,B08]

- Reduce* to an assumption that holds by a statistical argument
- Adapt dual systems to work for deterministic primitives

Moving away from q-type assumptions

Dual systems [W09,...] have proved effective at removing q-type assumptions

- Properties of bilinear groups: subgroup hiding and parameter hiding
- Abstract dual systems into three steps

Apply dual systems directly to variants of the uber-assumption [BBG05,B08]

- Reduce* to an assumption that holds by a statistical argument
- Adapt dual systems to work for deterministic primitives

Extension to Dodis-Yampolskiy PRF [DY05]
*currently only in composite-order groups ${ }_{4}$

Outline

Outline

Outline

Outline

> q-Type assumptions

Outline

Outline

Conclusions

Properties of (bilinear) groups

Standard bilinear group: ($\mathrm{N}, \mathrm{G}, \mathrm{H}, \mathrm{GT}, \mathrm{e}, \mathrm{g}, \mathrm{h}$)

Properties of (bilinear) groups

Standard bilinear group: (N, G, H, GT, e, g, h)
Group order;
prime or composite

Properties of (bilinear) groups

Properties of (bilinear) groups

$$
\begin{aligned}
& \text { Standard bilinear group: (N, G, H, GT, e, g, h) } \\
& \text { Group order; } \\
& \text { prime or composite } \\
& |G|=|H|=k N ;|G T|=\lambda N \\
& \mathrm{e}: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{G} \\
& \text { bilinearity: } e\left(g^{a}, h^{b}\right)=e(g, h)^{\text {ab }} \forall a, b \in Z / N Z \\
& \text { non-degeneracy: } e(x, y)=1 \quad \forall y \in H \Rightarrow x=1
\end{aligned}
$$

Properties of (bilinear) groups

$$
\begin{aligned}
& \text { Standard bilinear group: (N, G, H, GT, e, g, h) } \\
& \text { Group order; } \\
& \text { prime or composite } \\
& |G|=|H|=k N ;\left|G_{T}\right|=\lambda N \\
& \mathrm{e}: \mathrm{G} \times \mathrm{H} \rightarrow \mathrm{G} \\
& \text { bilinearity: } e\left(g^{a}, h^{b}\right)=e(g, h)^{\text {ab }} \forall a, b \in Z / N Z \\
& \text { non-degeneracy: } e(x, y)=1 \quad \forall y \in H \Rightarrow x=1
\end{aligned}
$$

Properties of (bilinear) groups

> Standard bilinear group: (N, G, H, GT, e, g, h)
> Group order;
> bilinearity: $e\left(g^{a}, h^{b}\right)=e(g, h)^{\text {ab }} \forall a, b \in Z / N Z$ non-degeneracy: $e(x, y)=1 \quad \forall y \in H \Rightarrow x=1$

Properties of (bilinear) groups

> Standard bilinear group: (N, G, H, GT, e, g, h)
> Group order;
> bilinearity: $e\left(g^{a}, h^{b}\right)=e(g, h)^{\text {ab }} \forall a, b \in Z / N Z$ non-degeneracy: $e(x, y)=1 \quad \forall y \in H \Rightarrow x=1$

Properties of (bilinear) groups

> Standard bilinear group: (N, G, H, Gt, e, g, h)
> Group order;
> bilinearity: $e\left(g^{a}, h^{b}\right)=e(g, h)^{\text {ab }} \forall a, b \in Z / N Z$ non-degeneracy: $e(x, y)=1 \quad \forall y \in H \Rightarrow x=1$

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{t}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{T}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

subgroup hiding

parameter hiding

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{T}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

Subgroup hiding [BGN05]:

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{T}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

Subgroup hiding [BGN05]:

\approx

subgroup hiding

parameter hiding

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{T}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{T}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

Subgroup hiding

Composite-order bilinear group: $(\mathrm{N}, \mathrm{G}, \mathrm{G} \mathrm{T}, \mathrm{e}, \mathrm{g})$ where $\mathrm{N}=\mathrm{pq}$

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements

$$
\mathrm{g}_{1}{ }_{\mathrm{f}\left(\mathrm{x} 1, \ldots, \mathrm{x}_{\mathrm{c}}\right)}^{\bar{\equiv}}{ }_{\mathrm{g}_{2}{ }^{\mathrm{f}\left(\mathrm{x} 1, \ldots, \mathrm{x}_{\mathrm{c}}\right)}}
$$

subgroup hiding

parameter hiding

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements
subgroup hiding
parameter hiding

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements

subgroup hiding

parameter hiding

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements
\bigcirc is independent from

\square
subgroup hiding
parameter hiding

Parameter hiding [L12]

Parameter hiding: elements correlated across subgroups are distributed identically to uncorrelated elements
\bigcirc is independent from \square
$x_{x_{i}}$ mod p reveals nothing about x_{i} mod q (CRT)

Typical dual-system proof for IBE [W09,LW10,...]

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

ID queries

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:

ID queries
normal:
$\xlongequal{\rightleftharpoons}$

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:

(subgroup hiding)

ID queries
normal:
完

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:

(subgroup hiding)
(parameter hiding)

ID queries
normal:

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:
semi-functional (SF):

(subgroup hiding)
(parameter hiding)

ID queries
normal:
完

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

semi-functional (SF):

(subgroup hiding)
(parameter hiding)

ID queries
normal:

(subgroup hiding)

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:
semi-functional (SF):

(subgroup hiding)
(parameter hiding)

ID queries
normal:

(subgroup hiding)
(parameter hiding)

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:
semi-functional (SF):

(subgroup hiding)
(parameter hiding)

ID queries
normal:
semi-functional (SF):

(subgroup hiding)
(parameter hiding)

Typical dual-system proof for IBE [W09,LW10,...]

Challenge ciphertext

normal:
semi-functional (SF):

(parameter hiding)

SF keys don't decrypt SF ciphertexts!

ID queries
normal:
semi-functional (SF):

(subgroup hiding)
(parameter hiding)

Dual systems in three easy steps

Dual systems in three easy steps

1. start with base scheme

Dual systems in three easy steps

normal:

1. start with base scheme

Dual systems in three easy steps

normal: -

1. start with base scheme
2. transition to SF version

Dual systems in three easy steps

normal:

semi-functional (SF):

(subgroup hiding)
(parameter hiding)

1. start with base scheme
2. transition to SF version

Dual systems in three easy steps

normal:

semi-functional (SF):

(subgroup hiding)
(parameter hiding)
(subgroup hiding)

1. start with base scheme
2. transition to SF version

Dual systems in three easy steps

normal:

semi-functional (SF):

(subgroup hiding)
(parameter hiding)
(subgroup hiding)
(subgroup hiding)

1. start with base scheme
2. transition to SF version

Dual systems in three easy steps

normal:

semi-functional (SF):

(subgroup hiding)
(parameter hiding)
(subgroup hiding)
(subgroup hiding)

1. start with base scheme
2. transition to SF version

Dual systems in three easy steps

normal:

semi-functional (SF):

(subgroup hiding)
(parameter hiding)
(subgroup hiding)
(subgroup hiding)

1. start with base scheme
2. transition to SF version
3. argue information is hidden ${ }_{1}$

Outline

Conclusions

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

- $\mathrm{c}=$ number of variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}} \leftarrow \mathscr{R}$

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

- $\mathrm{c}=$ number of variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}} \leftarrow \mathscr{R}$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>$: A is given $g,\left\{g^{\rho\left(x_{1}, \ldots, x_{0}\right)}\right\}$

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

- $\mathrm{c}=$ number of variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}} \leftarrow \mathscr{R}$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>$: A is given $g,\left\{g^{\rho\left(x_{1}, \ldots, x_{c}\right)}\right\}$
- $S=<1, \sigma_{1}, \ldots, \sigma_{s}>$: A is given $h,\left\{h^{\sigma \cdot\left(x_{1}, \ldots, x_{0}\right)}\right\}$

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

- $\mathrm{c}=$ number of variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}} \leftarrow \mathscr{R}$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>$: A is given $g,\left\{g^{\rho\left(x_{1}, \ldots, x_{c}\right)}\right\}$
- $S=<1, \sigma_{1}, \ldots, \sigma_{s}>$: A is given $h,\left\{h^{\sigma}\left(x_{1}, \ldots, x_{c}\right)\right\}$
- $\mathrm{T}=\left\langle 1, \mathrm{~T}_{1}, \ldots, \mathrm{~T}_{\mathrm{t}}\right\rangle$: A is given $\mathrm{e}(\mathrm{g}, \mathrm{h}),\left\{\mathrm{e}(\mathrm{g}, \mathrm{h})^{\mathrm{T}_{1}\left(x_{1}, \ldots, \mathrm{x}_{\mathrm{c}}\right.}\right\}$

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

- $\mathrm{c}=$ number of variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}} \leftarrow \mathcal{R}$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>$: A is given $g,\left\{g^{\rho\left(x_{1}, \ldots, x_{C}\right)}\right\}$
- $S=<1, \sigma_{1}, \ldots, \sigma_{s}>$: A is given $h,\left\{h^{\sigma_{i}\left(x_{1}, \ldots, x_{c}\right)}\right\}$
- $\mathrm{T}=\left\langle 1, \mathrm{~T}_{1}, \ldots, \mathrm{~T}_{\mathrm{t}}\right\rangle$: A is given $\mathrm{e}(\mathrm{g}, \mathrm{h}),\left\{\mathrm{e}(\mathrm{g}, \mathrm{h})^{\mathrm{T}_{1}\left(x_{1}, \ldots, \mathrm{x}_{\mathrm{c}}\right.}\right\}$
- $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}}\right)$: A needs to compute $\mathrm{e}(\mathrm{g}, \mathrm{h})^{\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{C}}\right)}$ (or distinguish it from random)

The "uber-assumption" [BBG05,B08]

Uber-assumption is parameterized by (c,R,S,T,f)

- $\mathrm{c}=$ number of variables: $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}} \leftarrow \mathcal{R}$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>$: A is given $g,\left\{g^{\rho_{i}\left(x_{1}, \ldots, x_{c}\right)}\right\}$
- $S=<1, \sigma_{1}, \ldots, \sigma_{s}>$: A is given $h,\left\{h^{\sigma \cdot\left(x_{1}, \ldots, x_{0}\right)}\right\}$
- $\mathrm{T}=\left\langle 1, \mathrm{~T}_{1}, \ldots, \mathrm{~T}_{\mathrm{t}}\right\rangle$: A is given $\mathrm{e}(\mathrm{g}, \mathrm{h}),\left\{\mathrm{e}(\mathrm{g}, \mathrm{h})^{\mathrm{T}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{C}}\right)}\right\}$
- $\mathrm{f}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{c}}\right)$: A needs to compute $\mathrm{e}(\mathrm{g}, \mathrm{h})^{f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{C}}\right)}$ (or distinguish it from random) uber(c,R,S,T,f) assumption: given (R,S,T) values, hard to compute/distinguish f

Example uber-assumption: exponent q-SDH

exponent $\mathrm{q}-$ SDH [ZS-NSO4]: given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \ldots, \mathrm{g}^{\mathrm{x}}\right)$, distinguish $\mathrm{g}^{\mathrm{x}}{ }^{\mathrm{a}+1}$ from random

Example uber-assumption: exponent q-SDH

exponent $\mathrm{q}-$ SDH [ZS-NSO4]: given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \ldots, \mathrm{g}^{\mathrm{a}}\right)$, distinguish $\mathrm{g}^{\mathrm{x}+1}$ from random

- $c=$ number of variables: $c=1$

Example uber-assumption: exponent q-SDH

exponent $\mathrm{q}-$ SDH [ZS-NSO4]: given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \ldots, \mathrm{g}^{\mathrm{a}}\right)$, distinguish $\mathrm{g}^{\mathrm{x}+1}$ from random

- $c=$ number of variables: $c=1$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>: \rho_{i}(x)=x^{i}(\forall i 0 \leq i \leq q)$

Example uber-assumption: exponent q-SDH

exponent $\mathrm{q}-$ SDH [ZS-NSO4]: given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \ldots, \mathrm{g}^{\mathrm{a}}\right)$, distinguish $\mathrm{g}^{\mathrm{x}+1}$ from random

- $c=$ number of variables: $c=1$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>: \rho_{i}(x)=x^{i}(\forall i 0 \leq i \leq q)$
- $S=<1>$
- $\mathrm{T}=\langle 1\rangle$

Example uber-assumption: exponent q-SDH

exponent $\mathrm{q}-$ SDH [ZS-NSO4]: given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \ldots, \mathrm{g}^{\mathrm{a}}\right)$, distinguish $\mathrm{g}^{\mathrm{x}+1}$ from random

- $c=$ number of variables: $c=1$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>: \rho_{i}(x)=x^{i}(\forall i 0 \leq i \leq q)$
- $S=\langle 1\rangle$
- $\mathrm{T}=\langle 1\rangle$
- $f\left(x_{1}, \ldots, x_{c}\right): f(x)=x^{q+1}$

Example uber-assumption: exponent q-SDH

exponent $\mathrm{q}-$ SDH [ZS-NSO4]: given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{x}}, \ldots, \mathrm{g}^{\mathrm{x}}\right)$, distinguish $\mathrm{g}^{\mathrm{x}}{ }^{\mathrm{q}+1}$ from random

- $c=$ number of variables: $c=1$
- $R=<1, \rho_{1}, \ldots, \rho_{r}>: \rho_{i}(x)=x^{i}(\forall i 0 \leq i \leq q)$
- $S=\langle 1\rangle$
- $\mathrm{T}=\langle 1\rangle$
- $f\left(x_{1}, \ldots, x_{c}\right): f(x)=x^{q+1}$
exponent q-SDH is $u b e r\left(1,<1,\left\{x^{i}\right\}>,<1>,<1>, x^{q+1}\right)$

Applying dual systems to exponent q-SDH
uber(c, $<1,\left\{x^{i}\right\}>,<1>,<1>$, $\left.^{q+1}\right)$

1. start with base scheme
2. transition to SF version
3. argue information is hidden ${ }_{14}$

Applying dual systems to exponent q-SDH

1. start with base scheme
2. transition to SF version
3. argue information is hidden ${ }_{14}$

Applying dual systems to exponent q-SDH

1. start with base scheme
2. transition to SF version
3. argue information is hiddent

Applying dual systems to exponent q-SDH

1. start with base scheme
2. transition to SF version
3. argue information is hidden \prod_{14}

Applying dual systems to exponent q-SDH

$$
\operatorname{uber}\left(\mathrm{c},<1,\left\{\mathrm{x}^{\mathrm{i}}\right\}>,<1>,<1>, \mathrm{x}^{\mathrm{q}+1}\right)
$$

1. start with base scheme
2. transition to SF version
3. argue information is hiddent

Applying dual systems to exponent q-SDH

 $\operatorname{uber}\left(\mathrm{c},<1,\left\{\mathrm{x}^{i}\right\}>,<1>,<1>, \mathrm{x}^{q+1}\right)$

1. start with base scheme
2. transition to SF version
3. argue information is hidden \prod_{14}

Applying dual systems to exponent q-SDH

1. start with base scheme
2. transition to SF version
3. argue information is hiddent

Applying dual systems to exponent q-SDH

1. start with base scheme
2. transition to SF version
3. argue information is hiddeñ

Applying dual systems to exponent q-SDH

1. start with base scheme
2. transition to SF version
3. argue information is hiddent

Applying dual systems to exponent q-SDH

$g_{1} \sum r_{k x}, \ldots, g_{1} \sum r k x_{k} 9$

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

```
uber(c,R,<1,{\mp@subsup{x}{}{i}}>,<1>,\mp@subsup{x}{}{q+1})->\operatorname{uber}(lc,<1,{\sum\mp@subsup{r}{k}{\prime}\mp@subsup{x}{k}{i}}>,<1>,<1>,\sum\mp@subsup{r}{k}{}\mp@subsup{x}{k}{}\mp@subsup{}{}{q+1})
```

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

```
uber(c,R,<1,{\mp@subsup{x}{}{i}}>,<1>,\mp@subsup{x}{}{q+1})->\operatorname{uber}(lc,<1,{\sumrk\mp@subsup{r}{k}{\prime}}>,<1>,<1>,\sumrk\mp@subsup{r}{k}{\prime}}\mp@subsup{}{}{q+1}
```

$$
\left[\begin{array}{llll}
r_{1} & r_{2} & \ldots & r_{l}
\end{array}\right]\left[\begin{array}{ccccc}
1 & x & \cdot & x^{q} & x^{q+1} \\
1 & x_{2} & \cdot & x_{2}{ }^{q} & x_{2}{ }^{q+1} \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
1 & x_{\ell} & \cdot & x_{\ell}{ }^{q} & x_{l}{ }^{q+1}
\end{array}\right]
$$

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

```
uber(c,R,<1,{\mp@subsup{x}{}{\prime}}>,<1>,\mp@subsup{x}{}{q+1})->\mathrm{ uber({c,<1,{ {rkxk}\mp@subsup{r}{k}{\prime}}>,<1>,<1>, \sum\mp@subsup{r}{k}{\prime}\mp@subsup{x}{k}{}\mp@subsup{}{}{q+1})
```

$$
\left[\begin{array}{llll}
r_{1} & r_{2} & \ldots & r_{l}
\end{array}\right]\left[\begin{array}{ccccc}
1 & x & \cdot & x^{q} & x^{q+1} \\
1 & x_{2} & \cdot & x_{2}{ }^{q} & x_{2}{ }^{q+1} \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
1 & x_{\ell} & \cdot & x_{\ell}{ }^{q} & x_{\ell}{ }^{q+1}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{\ell}
\end{array}\right]
$$

So A is really given

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

$$
\left[\begin{array}{llll}
r_{1} & r_{2} & \ldots & r_{l}
\end{array}\right]\left[\begin{array}{ccccc}
1 & x & \cdot & x^{q} & x^{a+1} \\
1 & x_{2} & \cdot & x_{2}^{q} & x_{2}{ }^{q+1} \\
\cdot & & \cdot & & \cdot \\
\cdot & & & \cdot & \cdot \\
1 & x_{l} & \cdot & x_{l}{ }^{q} & x_{l}{ }_{l}+1
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{l}
\end{array}\right]
$$

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

$$
\begin{array}{cccc}
{\left[\begin{array}{lllll}
r_{1} & r_{2} & \ldots & r_{l}
\end{array}\right]\left[\begin{array}{cccc}
1 & x & \cdot & x^{q} \\
x^{q+1} \\
1 & x_{2} & \cdot & x_{2}{ }^{q} \\
x_{2}{ }^{q+1} \\
\cdot & & \cdot & \\
\cdot & & \cdot \\
1 & x_{\ell} & \cdot & x_{\ell}{ }^{q} \\
x_{\ell}{ }_{l}^{q+1}
\end{array}\right]}
\end{array}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{\ell}
\end{array}\right]
$$

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

$$
\begin{array}{cccc}
{\left[\begin{array}{lllll}
r_{1} & r_{2} & \ldots & r_{\ell}
\end{array}\left[\begin{array}{cccc}
1 & x & \cdot & x^{q} \\
x^{q+1} \\
1 & x_{2} & \cdot & x_{2}{ }^{q} \\
x_{2}{ }^{q+1} \\
\cdot & & \cdot & \\
\cdot & & & \cdot \\
1 & x_{\ell} & \cdot & x_{\ell}{ }^{q} \\
x_{\ell}{ }_{l}^{q+1}
\end{array}\right]\right.}
\end{array}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\cdot \\
\cdot \\
y_{\ell}
\end{array}\right]
$$

Consider set S of ℓ-sized sets; then $\mathbf{r}, \mathbf{y} \in \mathrm{S}$
permutation
Matrix multiplication is $\mathrm{M}: \mathrm{S} \rightarrow \mathrm{s}$ 1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

Consider set S of ℓ-sized sets; then $\mathbf{r}, \mathbf{y} \in S$
permutation
Matrix multiplication is $\mathrm{M}: \mathrm{S} \rightarrow \mathrm{s}$ 1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to exponent q-SDH

Consider set S of ℓ-sized sets; then $\mathbf{r}, \mathbf{y} \in \mathrm{S}$
This is distributed uniformly random as well!
permutation
Matrix multiplication is $\mathrm{M}: \mathrm{S} \rightarrow \mathrm{s}$ 1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to the uber-assumption

More generally, this is true if

1	$\rho_{1}\left(\mathrm{X}_{11}, \ldots, \mathrm{x}_{10}\right)$	$\rho_{q}\left(X_{11}, \ldots, X_{1 c}\right)$	$f\left(x_{11}, \ldots, x_{10}\right)$
1	$\rho_{1}\left(\mathrm{X}_{21}, \ldots, \mathrm{X}_{2 \mathrm{c}}\right)$	$\rho_{q}\left(\mathrm{X}_{21}, \ldots, \mathrm{X}_{2 \mathrm{c}}\right)$	$f\left(x_{21}, \ldots, x_{2 c}\right)$
.	.		
1	$\rho_{1}\left(\mathrm{X}_{\ell 1}, \ldots, \mathrm{X}_{\ell c}\right)$	$\rho_{\mathrm{q}}\left(\mathrm{X}_{\ell 1}, \ldots, \mathrm{X}_{\ell c}\right)$	$f\left(X_{\ell 1}, \ldots, X_{l c}\right)$

has linearly independent columns (or rows)

1. start with base scheme
2. transition to SF version
3. argue information is hidden

Applying dual systems to the uber-assumption

More generally, this is true if

3. argue information is hidden

Applying dual systems to the uber-assumption

More generally, this is true if

3. argue information is hidden

Applying dual systems to the uber-assumption

More generally, this is true if

3. argue information is hidden

Outline

Strengthening our results

Strengthening our results

Remember that we needed two types of subgroup hiding ...
...even when given a generator for \bigcirc

Strengthening our results

Remember that we needed two types of subgroup hiding ...

...even when given a generator for \bigcirc

Strengthening our results

Remember that we needed two types of subgroup hiding ...

...even when given a generator for \bigcirc

Strengthening our results

Remember that we needed two types of subgroup hiding ...

...even when given a generator for \bigcirc

This restricts us to "one-sided" assumptions $2 . S=T=<1>$

Strengthening our results

Remember that we needed two types of subgroup hiding ...

...even when given a generator for \bigcirc

This restricts us to "one-sided" assumptions $2 . S=T=<1>$
[eq-SDH] $\quad\left(g, g^{x}, \ldots, g^{x^{q}}\right) \rightarrow g^{x^{q+1}}$ or random

Strengthening our results

Remember that we needed two types of subgroup hiding ...

...even when given a generator for \bigcirc

This restricts us to "one-sided" assumptions $2 . S=T=<1>$
[eq-SDH] $\quad\left(g, g^{x}, \ldots, g^{x^{q}}\right) \rightarrow g^{x^{q+1}}$ or random
$[q-S D H]\left(g, g^{x}, \ldots, g^{\times 9}, h^{x}\right) \rightarrow$ compute $\left(c, g^{1 / x+c}\right)$

Strengthening our results

Remember that we needed two types of subgroup hiding...

Strengthening our results

Remember that we needed two types of subgroup hiding...

To address this, switch back to regular dual systems

Strengthening our results

Remember that we needed two types of subgroup hiding...

To address this, switch back to regular dual systems

$$
\stackrel{\mathrm{sh}}{\rightleftharpoons} \mathrm{\equiv} \mathrm{\equiv} \mathrm{ph} \xlongequal{\bar{\rightleftharpoons}}
$$

Strengthening our results

Remember that we needed two types of subgroup hiding...

To address this, switch back to regular dual systems

Strengthening our results

Remember that we needed two types of subgroup hiding...

To address this, switch back to regular dual systems

limitation
 Computational uber(c,R,S,T,f) holds if:

1. subgroup hiding and parameter hiding hold 2. f is not a linear combination of p_{i}

Strengthening our results

Remember that we needed two types of subgroup hiding...

To address this, switch back to regular dual systems

$$
\Longrightarrow \mathrm{sh} \xlongequal{\Longrightarrow} \equiv \mathrm{ph} \xlongequal{\Longrightarrow}
$$

This implies (for example) that q-SDH [BBO4] follows from subgroup hiding....
...and so does everything based on q-SDH (like Boneh-Boyen signatures)*
*when instantiated in asymmetric composite-order groups [BRS11]

Reexamining the Dodis-Yampolskiy PRF

$$
\mathrm{f}(\mathrm{x})=\mathrm{u}^{1 / \mathrm{sk}+\mathrm{x}} \text { for fixed sk } \leftarrow R ; \mathrm{x} \in \mathrm{a}(\lambda)
$$

Reexamining the Dodis-Yampolskiy PRF

$$
f(x)=u^{1 / s k+x} \text { for fixed sk } \leftarrow R ; x \in a(\lambda)
$$

Theorem [DY05]: Advvrf $\leq a(\lambda) \cdot A d v a(\lambda)$-DBDH

Reexamining the Dodis-Yampolskiy PRF

$$
\mathrm{f}(\mathrm{x})=\mathrm{u}^{1 / \mathrm{sk}+\mathrm{x}} \text { for fixed sk } \leftarrow R ; \mathrm{x} \in \mathrm{a}(\lambda)
$$

Theorem [DY05]: Advrff $\leq a(\lambda) \cdot A d v a(\lambda)-D B D H$
© - verifiable random function

Reexamining the Dodis-Yampolskiy PRF

$$
\mathrm{f}(\mathrm{x})=\mathrm{u}^{/ / \mathrm{sk}+\mathrm{x}} \text { for fixed sk } \leftarrow R ; \mathrm{x} \in \mathrm{a}(\lambda)
$$

Theorem [DY05]: Advrff $\leq a(\lambda) \cdot A d v a(\lambda)-D B D H$
-) verifiable random function
© require $\mathrm{u}=\mathrm{e}(\mathrm{g}, \mathrm{h})$

Reexamining the Dodis-Yampolskiy PRF

$$
f(x)=u^{1 / s k+x} \text { for fixed sk } \leftarrow R ; x \in a(\lambda)
$$

Theorem [DY05]: Ad $\sqrt{v r f f} \leq a(\lambda) \cdot \operatorname{Ad} \sqrt{a(\lambda)-D B D H I}$
© - verifiable random function ©q-type assumption
© require $u=e(\mathrm{~g}, \mathrm{~h})$

Reexamining the Dodis-Yampolskiy PRF

$$
f(x)=u^{-/ s k+x} \text { for fixed sk } \leftarrow R ; x \in a(\lambda)
$$

Theorem [DY05]: Ad $\sqrt{v r f f} \leq a(\lambda)$. Ad $\sqrt{a(\lambda)-D B D H}$
© - verifiable random function ©q-type assumption
© require $\mathrm{u}=\mathrm{e}(\mathrm{g}, \mathrm{h})$
-looseness: need |a($(\lambda) \mid \leq$ poly (λ)

Reexamining the Dodis-Yampolskiy PRF

$$
f(x)=u^{1 / s k+x} \text { for fixed sk } \leftarrow R ; x \in a(\lambda)
$$

Theorem [DY05]: Adv ${ }^{v r f} \leq a(\lambda) \cdot A d v a(\lambda)-$ DBDH
© verifiable random function ©q-type assumption
©require u=e(g,h) -looseness: need $|\mathrm{a}(\lambda)| \leq$ poly (λ)

Theorem: Adv ${ }^{\text {prf }} \leq q \cdot A d v^{s g h}$

Reexamining the Dodis-Yampolskiy PRF

$$
f(x)=u^{1 / s k+x} \text { for fixed sk } \leftarrow R ; x \in a(\lambda)
$$

Theorem [DY05]: Adv ${ }^{v r f} \leq a(\lambda) \cdot A d v(\lambda)-D B D H$
(). verifiable random function ©q-type assumption
©require $u=e(\mathrm{~g}, \mathrm{~h}) \quad$ looseness: need $|\mathrm{a}(\lambda)| \leq$ poly (λ)

Theorem: Ad\vorf $\leq q \cdot A d v s g h$
Θ pseudorandom function

Reexamining the Dodis-Yampolskiy PRF

$$
f(x)=u^{/ / s k+x} \text { for fixed sk } \leftarrow R ; x \in a(\lambda)
$$

Theorem [DY05]: Adv ${ }^{v r f} \leq a(\lambda) \cdot A d v^{a(\lambda)-D B D H ~}$
© - verifiable random function ©q-type assumption
©require u=e(g,h) -looseness: need |a($(\lambda) \mid \leq$ poly (λ)

Theorem: $\operatorname{Ad} \downarrow$ vorf $\leq q \cdot A d v s g h$

©pseudorandom function
©require composite order

Reexamining the Dodis-Yampolskiy PRF

$$
\mathrm{f}(\mathrm{x})=\mathrm{u}^{-/ \mathrm{sk}+\mathrm{x}} \text { for fixed sk } \leftarrow R ; \mathrm{x} \in \mathrm{a}(\lambda)
$$

Theorem [DY05]: Adv ${ }^{v r f} \leq a(\lambda) \cdot A d v^{a(\lambda)-D B D H ~}$
© - verifiable random function ©q-type assumption
©require u=e(g,h) -looseness: need |a($(\lambda) \mid \leq$ poly (λ)

Theorem: $\operatorname{Ad} \downarrow$,prf $\leq q \cdot A d v s g h$

©pseudorandom function
© static assumption
©require composite order

Reexamining the Dodis-Yampolskiy PRF

$$
\mathrm{f}(\mathrm{x})=\mathrm{u}^{-1 / \mathrm{sk}+\mathrm{x}} \text { for fixed sk } \leftarrow \mathcal{R} ; \mathrm{x} \in \mathrm{a}(\lambda)
$$

Theorem [DY05]: Adv ${ }^{v r f} \leq a(\lambda) \cdot A d v(\lambda)-D B D H$

Theorem: Advorf $\leq q$ Advsgh

© pseudorandom function

- - static assumption
© require composite order ©a(λ) of arbitrary size

Outline

> q-Type assumptions

Conclusions

Conclusions and open problems

Conclusions and open problems

We applied the dual-system technique directly to a broad class of assumptions

Conclusions and open problems

We applied the dual-system technique directly to a broad class of assumptions

Limitation: Restricted to (asymmetric) composite-order (bilinear) groups

Conclusions and open problems

We applied the dual-system technique directly to a broad class of assumptions

Limitation: Restricted to (asymmetric) composite-order (bilinear) groups

Limitation: Can't get rid of every q-type assumption

Conclusions and open problems

We applied the dual-system technique directly to a broad class of assumptions

Limitation: Restricted to (asymmetric) composite-order (bilinear) groups

Limitation: Can't get rid of every q-type assumption

Full version!: cs.ucsd.edu/~smeiklejohn/files/eurocrypt14a.pdf

Conclusions and open problems

We applied the dual-system technique directly to a broad class of assumptions

Limitation: Restricted to (asymmetric) composite-order (bilinear) groups

Limitation: Can't get rid of every q-type assumption

Full version!: cs.ucsd.edu/~smeiklejohn/files/eurocrypt14a.pdf

Thanks! Any questions?

