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A one way function from number theory

Let D be a large square free integer, and let p1, p2, p3, . . . be
a sequence of primes with pi - D. Define(

D

p

)
=

{
1 if x2 ≡ D (mod p) has a solution,

−1 if x2 ≡ D (mod p) doesn’t have a solution.

Think of D as the key to a bitstream

D →
(

D

p1

)
,

(
D

p2

)
, . . . ,

(
D

pt

)
.
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A one way function from number theory, (cont.)

One can also think of D as corresponding to a one way
function, from sequences of primes to sequences of bits.

This is a very strong one way function in the following sense:
Given a sequence such as

{ε1, ε2, . . . , ε100,000},

with each εi = ±1, there is with high probability at most one

D < 280 with the property that
(
D
p i

)
= εi for every i .

However, there is no known way to locate such a D without

the knowledge of at least on the order of 240 such
(
D
p i

)
.
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A one way function from number theory, (cont.)

In fact, the
(
D
p i

)
can be thought of as the coefficients of

something called a Dirichlet L-series:

LD(s) =
∏
p

(
1−

(
D

p i

)
p−s
)−1

.

This is an analog of the Riemann zeta function:

ζ(s) =
∑
n≥1

1

ns
=
∏
p

(
1− p−s

)−1
.

Both are believed to satisfy the Riemann Hypothesis. In the

case of LD(s) this says the the symbols
(
D
p i

)
are distributed

randomly and uniformly.

It was first suggested by Damg̊ard (Crypto ’88) that this
mapping could be used as a one way function to construct a
cryptographically strong bit generator.
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Elliptic curves as one way functions

An elliptic curve
y 2 = x3 + ax + b

has a sequence of coefficients associated to it. For every prime p
we have

cE (p) = p + 1−#E (Fp)

and #E (Fp) is one plus the number of solutions to
y 2 ≡ x3 + ax + b (mod p).
In 1994 Goldfeld and Anshel proposed that for each E , the
mapping

E → cE (p1), cE (p2), . . . , cE (pt)

could be thought of as a one way function.
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Elliptic curves as one way functions (cont.)

Attached to each E there is also a corresponding
D = 4a3 + 27b2.

There is also a corresponding L series, LE (s), and the
Generalized Riemann Hypothesis implies that the cE (p)
appear random and are well distributed.

Goldfeld and I had shown that, assuming the GRH,
(log D)2 log log D coefficients determine the series,

However, no known algorithm for reconstructing the curve
with less than

√
D coefficients exists.
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Some irresistible questions

Could this one way function (curve → coefficients) be used to
construct a public key cryptosystem?

Or maybe a key exchange protocol?

A simpler question: Given a list of coefficients
c(p1), c(p2), . . . , c(pt) is there some way to prove that one
has knowledge of the elliptic curve E that generates these
coefficients, without revealing E ?

Twenty years later I still don’t know the answers to these
questions.
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Enter function fields

A very simple class of L-series: Fix a prime q and consider
monic polynomials with coefficients chosen mod q. Can define
a Legendre symbol:

(
f

g

)
=


1 if x2 ≡ f (mod g) has a solution,

−1 if x2 ≡ f (mod g) doesn’t have a solution,

0 if (f , g) 6= 1.

For such symbols an analogous RH is known to be true,

proved by A. Weil, and consequently the values of
(

f
g

)
as g

varies over irreducible monic polynomials (primes) are random
and well distributed.
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function fields, cont.

The very simplest primes are monic of degree one: g = x − α,
for some α (mod q).

In this case (
f

x − α

)
=

(
f (α)

q

)
.

So in particular, the values of the usual quadratic symbol(
f (α)
q

)
are random and uniformly distributed mod q.

New Question

Given a public q and a secret polynomial f , prove knowledge of f ,
given a public collection of values:(

f (α1)

q

)
,

(
f (α2)

q

)
, . . . ,

(
f (αt)

q

)
.
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function fields, cont.

In fact, why not consider the actual values f (α) (mod q)?

New Question 2

Given a public q and a secret polynomial f , prove knowledge of f ,
given a public collection of values:

f (α1), f (α2), . . . , f (αt) (mod q).

The problem: If t ≈ deg(f ′)/2, there are lots of f ′ such that
f ′(αi ) ≡ f (αi ) (mod q) for 1 ≤ i ≤ t.
Possible solution: Require that f also belong to some restricted
class determined by its coefficients.
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Lattices enter the picture

Definition

A polynomial f (x) = a0 + a1x + · · ·+ aN−1xN−1 with coefficients
in Z is called short if there exists 1 ≤ c � q such that for each i ,
|ai | ≤ c. A polynomial f ∈ Z/qZ[x ] is called short if there is a lift
back to Z[x ] that is short.

We now have a very specific hard problem to work with:

Hard Problem

Given N > t > 1, and two collections of values mod q:

{α1, α2, . . . , αt} and {β1, β2, . . . , βt},

find a polynomial f with deg f < N such that f is short, and

f (αi ) ≡ βi (mod p) for i = 1, 2, . . . , t.
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Translation into a closest vector problem, or CVP

For any polynomial p with deg p ≤ N − 1, identify
p(x) = a0 + a1x + · · ·+ aN−1xN−1 with the vector

(a0, a1, . . . , aN−1) ∈ ZN .

Let L denote the lattice of all vectors p such that

p(αi ) ≡ 0 (mod q), for all 1 ≤ i ≤ t.

Let F correspond to any, not necessarily short, polynomial
satisfying

F (αi ) ≡ bi (mod q), for all 1 ≤ i ≤ t.

Then if F0 is the lattice point of L that is closest to F , with high
probability F − F0 will be a short polynomial with the correct
evaluations.
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How hard is it to solve a CVP?

This had to be left unsolved for now.

The LLL algorithm performed better than expected in
dimensions less than 100. What would happen if the degree
was 200 or 300?

It was generally believed in 1995 that it would continue to
perform well enough to be a significant danger to lattice
based cryptosystems.

I asked H. Lenstra how effective LLL was as the dimension
increased?

The Question Remained

Assuming it is hard to find a short polynomial with specific
evaluations, how to prove knowledge of one?
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Introducing a more compact ring structure

Rather than taking f (x) ∈ Z/qZ[x ], take
f (x) ∈ Z/qZ[x ]/(xN − 1).

If for each i , αN
i ≡ 1 (mod q), then the map

f → (f (α1), f (α2), . . . , f (αt)) (mod q, xN − 1)

is a ring homomorphism.

On the left, multiplication is given by a convolution operation:(
N−1∑
i=0

aix
i

)
∗

N−1∑
j=0

bjx
j

 =
N−1∑
k=0

ckxk ,

where
ck =

∑
i+j≡k

aibj .
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Introducing a more compact ring structure, cont.

This ring homomorphism is actually the mapping of a function
to its Fourier transform.

A short polynomial is one with its Fourier coefficients
concentrated within a bounded distance from 0.

The uncertainty principle tells us that the tighter the
distribution of the Fourier coefficients, the more dispersed the
Fourier transform will be.
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Short times short equals short

Suppose, N = 107, and f , g have coefficients from {−1, 0, 1}.
Then the distribution of coefficients of f ∗ g looks like

Out[26]=
20 40 60 80 100

-40

-20

20

40
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Proof of knowledge of a short polynomial

The hard problem of finding a short polynomial with a specified
collection of values was turned into a digital signature scheme (as
opposed to a public key cryptosystem) during the year 1994-95,
with Burt Kaliski, Daniel Lieman, Matt Robshaw and Yiqun Lisa
Yin.
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Proof of knowledge of a short polynomial, (cont.)

One is given a short f with valuations

(f (α1), f (α2), . . . , f (αt)) (mod q).

Generate a random short g and publish

(g(α1), g(α2), . . . , g(αt)) (mod q).

Receive challenge, a short polynomial c .

Compute and publish the polynomial

h = g ∗ (f + c).

Verify that h is short, and h(αi ) ≡ g(αi )(f (αi ) + c(αi ))
(mod q) for all i .
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The catch....

It appeared at first that it would be hard to recover the secret
f from a long list of h, that is, a long transcript.

Burt Kaliski noticed that if you introduce the notion of a
reversal operation

h̃(x) = h(x−1),

then this was a ring homomorphism and an average of h ∗ h̃
would converge to a constant multiple of f ∗ f̃ .

We never found a clean way of reducing or eliminating this
information leakage.
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A fix, many years later....

In 2009 V. Lyubashevsky introduced the notion of rejection
sampling.

It turns out that replacing g ∗ (f + c) by g + f ∗ c, and
eliminating g , c pairs when g + f ∗ c has too large an infinity
norm, can produce an information free transcript.
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Fall 1995 - enter NTRU

For most f there exists an inverse f −1 with the property that
f ∗ f −1 ≡ 1 (mod q, xN − 1)

If the coefficients of f are chosen from {−1, 0, 1}, the
coefficients of f −1 look completely random mod q.

Out[31]=
20 40 60 80 100

-100

-50
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Fall 1995 - enter NTRU, cont.

In fact, if g is another such short polynomial, the coefficients
of h = 3f −1 ∗ g also look random
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Fall 1995 - enter NTRU, cont.

This suggested that if m, r were two additional short
polynomials, m could be concealed by writing

e = r ∗ h + m.

This looks random:

Out[40]=
20 40 60 80 100

-100

-50

50

100

Jeff Hoffstein The Story of NTRU



Fall 1995 - enter NTRU, cont.

This suggested that if m, r were two additional short
polynomials, m could be concealed by writing

e = r ∗ h + m.

This looks random:

Out[40]=
20 40 60 80 100

-100

-50

50

100

Jeff Hoffstein The Story of NTRU



Fall 1995 - enter NTRU, cont.

This suggested that if m, r were two additional short
polynomials, m could be concealed by writing

e = r ∗ h + m.

This looks random:

Out[40]=
20 40 60 80 100

-100

-50

50

100

Jeff Hoffstein The Story of NTRU



Fall 1995 - enter NTRU, cont.

However, multiplying by f would create

a = f ∗ e = f ∗ (3r ∗ f −1 ∗ g + m) = 3r ∗ g + f ∗m,

which is short, and has a coefficient distribution
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Fall 1995 - enter NTRU, cont.

The original 3r ∗ g + f ∗m, not reduced mod q would then be
recovered.

Reducing mod 3 → f ∗m (mod 3),

and multiplying by f −1 (mod 3) would reveal m
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Fall 1995 - Spring 1996

Teamed up with Jill Pipher and Joe Silverman to analyze
security, determine parameters, and to generally try to
transform a vague idea into a concrete cryptosystem.

The fundamental hard problem was: Given a polynomial h of
degree N − 1 with coefficients mod q, find a short polynomial
f with the property that after reduction mod q, f ∗ h was also
short.

This was immediately translatable into the problem of finding
a very short vector (f , g) in a certain 2N-dimensional lattice.

We believed this problem should be hard, but we had no idea
how to quantify the hardness.

We calculated the combinatorial difficulty of searching for f
via brute force, and A. Odlyzko showed us how a meet in the
middle attack could cut the combinatorial security exponent
in half.
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The rump session of Crypto ’96

I presented the ideas in a several minute slot in the rump
session of Crypto ’96.

I presented the ideas as I would have at any math conference:
i.e., I hoped that they would be thought interesting and that
people who knew more about this stuff than I did would be
able to make helpful suggestions.

People were, in fact, interested, but they also seemed irritated
that I had not done a complete security analysis before
presenting it, and had not circulated it to experts in
cryptography first.

Jeff Hoffstein The Story of NTRU



The rump session of Crypto ’96

I presented the ideas in a several minute slot in the rump
session of Crypto ’96.

I presented the ideas as I would have at any math conference:
i.e., I hoped that they would be thought interesting and that
people who knew more about this stuff than I did would be
able to make helpful suggestions.

People were, in fact, interested, but they also seemed irritated
that I had not done a complete security analysis before
presenting it, and had not circulated it to experts in
cryptography first.

Jeff Hoffstein The Story of NTRU



The rump session of Crypto ’96

I presented the ideas in a several minute slot in the rump
session of Crypto ’96.

I presented the ideas as I would have at any math conference:
i.e., I hoped that they would be thought interesting and that
people who knew more about this stuff than I did would be
able to make helpful suggestions.

People were, in fact, interested, but they also seemed irritated
that I had not done a complete security analysis before
presenting it, and had not circulated it to experts in
cryptography first.

Jeff Hoffstein The Story of NTRU



The response from D. Coppersmith and A. Shamir at
EuroCrypt ’97

Their position was that LLL would easily solve the shortest
vector problem for any remotely practical parameters.

They made one important observation that we had missed:

If there was another vector in the lattice (f ′, g ′) of a similar
length to (f , g), or shorter, then f ′ would probably act as a
moderately good decryption key. Here’s what they said:

Jeff Hoffstein The Story of NTRU



The response from D. Coppersmith and A. Shamir at
EuroCrypt ’97

Their position was that LLL would easily solve the shortest
vector problem for any remotely practical parameters.

They made one important observation that we had missed:

If there was another vector in the lattice (f ′, g ′) of a similar
length to (f , g), or shorter, then f ′ would probably act as a
moderately good decryption key. Here’s what they said:

Jeff Hoffstein The Story of NTRU



The response from D. Coppersmith and A. Shamir at
EuroCrypt ’97

Their position was that LLL would easily solve the shortest
vector problem for any remotely practical parameters.

They made one important observation that we had missed:

If there was another vector in the lattice (f ′, g ′) of a similar
length to (f , g), or shorter, then f ′ would probably act as a
moderately good decryption key. Here’s what they said:

Jeff Hoffstein The Story of NTRU



The response from D. Coppersmith and A. Shamir at
EuroCrypt ’97

To summarize: if there are many vectors f ′ with nf ′ ≤ nf then
we are likely to stumble across one and be able to decrypt. If
f is much shorter than all other vectors then we are likely to
find f . The only hope for the scheme to remain secure is for
many vectors to satisfy, say, nf ′ = 10× nf and hope that the
lattice basis reduction methods fail to find f among the sea of
f ′. With any improvements in the technology of lattice basis
reductions, this temporary security would vanish.

They also said:

. . . We believe that for the recommended parameters of the
NTRU cryptosystem the LLL algorithm will be able to find the
original secret key f . . .
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I was told by someone who was there (a leading figure in the
field) that by the end of the talk NTRU lay in shreds and
tatters on the floor.

The original NTRU paper was rejected by the Crypto ’97
organizing committee.
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What next

We were sure that the surprising successes of LLL were an
artifact of low dimensions.

We set up a (cheap) computer lab and began running months
of testing of the BKZ algorithm, using Victor Shoup’s NTL
implementation.

We solved the key recovery problem for sequences
(N1, q1), (N2, q2), . . . with the Ni increasing, and the ratio
Ni/qi constant.

We found that block size 2 (= LLL) worked for initial N up to
about 50, (Corresponding lattice dimension = 100).

Afterwords, the necessary block size increased linearly with N,
with a slope depending on the N/q ratio.

Computation time went up slightly super exponentially with
block size, and also with N.
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What we found

There is a radius that comes from the Gaussian heuristic:

r =

√
Nq

πe
.

We set things so that

target = ||(f , g)|| ≈ r/
√

N.

With high probability there were no lattice elements other
than rotations of (f , g) inside a sphere of radius r .

We found that finding a lattice element with norm close to r
was a little like trying to approach the speed of light.

BKZ would find only trivial solutions until the block size was
big enough, then break through directly to the key.
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Challenge problems.

In 1997/98 we published four challenge problems:

N=107, q=64 (a warmup),

N = 167, q=128,

N = 251, q = 256,

N= 503, q = 256.

The N = 107 problem was solved by A. May and P. Nguyen. (And
possibly others that didn’t communicate with us.) To this day I am
not aware of any solutions to even the N = 167 problem.
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Time for a signature scheme and a disaster.

While these experiments were progressing there were a number
of papers published on NTRU. Some proposed methods of
speeding up lattice reduction, such as zero forcing (A. May).
Others focused on attacks due to potential decryption failures.

In the meantime, we figured we would try to find a signature
scheme based on this circle of ideas.

The hope was to find something based on the following hard
problem: Given the product f ∗ g , and the knowledge that
f , g are short, recover f , g .
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Time for a signature scheme and a disaster.

Skipping over some other mistakes we made, what we came
up with unfortunately produced a transcript reducible to:
f ∗ g1, f ∗ g2, . . . f ∗ gt , and this turned out to be a lot easier
than the original problem.

It could be treated as a lattice problem, finding a gcd, but C.
Gentry and M. Szydlo found a much more powerful way to
attack it.

(f ∗ gi ) ∗ rev(f ∗ gi )→ f ∗ f̃ ∗ gi ∗ g̃i → (constant)(f ∗ f̃ ).

They found a very clever way to recover f from f ∗ f̃ .
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Time for a signature scheme and a disaster.

Luckily the crypto community was pretty forgiving about this
mishap.
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Signature scheme, take 2.

The alternative was to base a signature scheme directly on the
NTRU lattice, following the model of GGH,

Nick Howgrave-Graham helped us find a way to construct a
complete basis for the NTRU lattice, out of the half basis
consisting of rotations of (f , g).

The scheme was then simply the traditional one of using the
better private basis to find non-trivial solutions to CVP.

Jeff Hoffstein The Story of NTRU



Signature scheme, take 2.

The alternative was to base a signature scheme directly on the
NTRU lattice, following the model of GGH,

Nick Howgrave-Graham helped us find a way to construct a
complete basis for the NTRU lattice, out of the half basis
consisting of rotations of (f , g).

The scheme was then simply the traditional one of using the
better private basis to find non-trivial solutions to CVP.

Jeff Hoffstein The Story of NTRU



Signature scheme, take 2.

The alternative was to base a signature scheme directly on the
NTRU lattice, following the model of GGH,

Nick Howgrave-Graham helped us find a way to construct a
complete basis for the NTRU lattice, out of the half basis
consisting of rotations of (f , g).

The scheme was then simply the traditional one of using the
better private basis to find non-trivial solutions to CVP.

Jeff Hoffstein The Story of NTRU



New vulnerabilities.

It was still vulnerable to the derivation of a 2 by 2 Gram
matrix from a long transcript. This matrix had four entries
similar to, but somewhat more complicated than, the f f̃
object that caused the vulnerability of NSS.

I still don’t know if this higher dimensional object is
attackable by the same strategy.

Just this summer I asked H. Lenstra....
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New vulnerabilities, cont.

A long transcript of NTRUSign signatures revealed a fuzzy
image of a private 2n-dimensional fundamental parallelepiped.

In 2006 P. Nguyen and O. Regev found a very clever way of
using fourth moments and independent component analysis to
recover the secret key from such an image.

One defense against this was the addition of perturbations to
the signatures. Essentially this replaced the 2n-dimensional
fundamental parallelepiped by the sum of several such
parallelepipeds.

Then, around a year and a half ago, P. Nguyen and L. Ducas
managed to solve the case of one perturbation, with the
possibility of going further.

So clearly this sort of perturbation was not the answer.
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A new signature scheme!

Finally, inspired by rejection sampling, there is a completely
new version of NTRUSign.

It uses only the half basis of rotations of (f , g), and an
auxiliary small prime p.

It has a provably information-free transcript.

Jeff Hoffstein The Story of NTRU



A new signature scheme!

Finally, inspired by rejection sampling, there is a completely
new version of NTRUSign.

It uses only the half basis of rotations of (f , g), and an
auxiliary small prime p.

It has a provably information-free transcript.

Jeff Hoffstein The Story of NTRU



A new signature scheme!

Finally, inspired by rejection sampling, there is a completely
new version of NTRUSign.

It uses only the half basis of rotations of (f , g), and an
auxiliary small prime p.

It has a provably information-free transcript.

Jeff Hoffstein The Story of NTRU



Gaussian sampling and a new era

In 2008 C Gentry, C Peikert, V Vaikuntanathan introduced the
notion of generating lattice points according to a Gaussian
distribution. This was extended by a number of authors, including
C. Peikert, L. Ducas and P. Nguyen. In 2011 D. Stehlé and R.
Steinfeld showed how to use such techniques to relate the security
of NTRU and NTRUSign to worst case problems over ideal
lattices. They showed that if the secret key polynomials are
selected by rejection from discrete Gaussians, then the public key,
which is their ratio, is statistically indistinguishable from uniform
over its domain.
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Homomorphic encryption

In 2009 C. Gentry created the first fully homomorphic
encryption scheme.

As it was ring based, NTRU was (inadvertently) somewhat
homomorphic - if q was large enough.

This made it a logical direction to look in for exploring more
efficient fully homomorphic encryption schemes.

Since then there has been a massive amount of work on this
subject, and on the subject of further improving the
theoretical foundations of schemes based on ideal lattices. Far
too many authors to fit on this slide!

I could talk about this for hours more....

... or I could stop right here.

Thanks!

For the memories....
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