KEY DERIVATION WITHOUT ENTROPY WASTE

Yevgeniy Dodis New York University

Joint work with Krzysztof Pietrzak and Daniel Wichs

Key Derivation

2

- Setting: application P needs m—bit secret key R
- □ <u>Theory</u>: pick uniformly random $R \leftarrow \{0,1\}^m$
- □ <u>Practice</u>: have "imperfect randomness" $X \in \{0,1\}^n$
 - physical sources, biometric data, partial key leakage, extracting from group elements (DH key exchange), ...
- Need a "bridge": key derivation function (KDF)
 - $h: \{0,1\}^n \rightarrow \{0,1\}^m$ s.t. R = h(X) is "good" for P
 - $\blacksquare \dots \underline{only}$ assuming X has "minimal entropy" k

3

□ Ideal Model: pick uniform R ← U_m as the key
□ Assume P is ε-secure (against certain class of attackers A)
□ Real Model: use R = h(X) as the key, where
Real Security ε' ≈ Ideal Security ε

□ Goal: minimize k s.t. P is 2ϵ -secure using R = h(X)

- **\square** Equivalently, minimize entropy loss L = k m
- (If possible, get information-theoretic security)
- **D**Note: we design h but must work for any (n, k)-source X

DNote: we design h but must work for any (n, k)-source X

Old Approach: Extractors

- <u>Tool</u>: Randomness Extractor [NZ96].
 - Input: a weak secret X and a uniformly random seed S.
 - Output: extracted key R = Ext(X; S).
 - $\square R$ is uniformly random, even conditioned on the seed S.

(**Ext**(X; S), S) \approx (Uniform, S)

Many uses in complexity theory and cryptography.

Well beyond key derivation (de-randomization, etc.)

Old Approach: Extractors

- <u>Tool</u>: Randomness Extractor [NZ96].
 - Input: a weak secret X and a uniformly random seed S.
 - Output: extracted key R = Ext(X; S).
 - **R** is uniformly random, even conditioned on the seed S. (Ext(X; S), S) \approx (Uniform, S)
- $\Box (k, \varepsilon)$ -extractor: given any secret (n, k)-source X, outputs *m* secret bits " ε -fooling" any distinguisher **D**: statistical distance

 $\Pr[D(Ext(X; S), S) = 1] - \Pr[D(U_m, S) = 1] | \le \varepsilon$

Extractors as KDFs

- \Box Lemma: for any ε -secure P needing an *m*-bit key,
 - (k,ε) -extractor is a KDF yielding security $\varepsilon' \leq 2\varepsilon$
- □ <u>LHL</u> [HILL]: universal hash functions are (k, ε) -extractors where $k = m + 2\log(1/\varepsilon)$
- □ <u>Corollary</u>: For any P, can get entropy loss <u>2log(1/ε)</u>

- \Box Many sources do not have "extra" $2\log(1/\epsilon)$ bits
 - Biometrics, physical sources, DH keys on elliptic curves
 - **DH:** low $k \Rightarrow$ smaller group size \Rightarrow higher efficiency
 - AES-based P: $\varepsilon = 2^{-64}$, $m = 128 \implies k = 256 = 2m$ \otimes
- \Box Heuristic extractors have "no entropy loss": k = m
- <u>End Result</u>: practitioners prefer heuristic key derivation to provable key derivation [DGH⁺,Kra]
 Can we provably match it, despite RT-bound?

Extractors as KDFs

- \Box Lemma: for any \mathcal{E} -secure P needing an *m*-bit key,
 - (k,ε) -extractor is a KDF yielding security $\varepsilon' \leq 2\varepsilon$
- □ <u>LHL</u> [HILL]: universal hash functions are (k, ε) -extractors where $k = m + 2\log(1/\varepsilon)$
- \Box <u>Corollary</u>: For any P, can get entropy loss $2\log(1/\epsilon)$

<u>**RT-bound</u>** [RT]: for any extractor, $k \ge m + 2\log(1/\epsilon)$ </u>

entropy loss 2log(1/ɛ) seems necessary ③

□ ... or is it?

Side-Stepping RT

- Do we need to derive statistically random R?
 - \square Yes for one-time pad \otimes ...
 - - Series of works "beating" RT [BDK+11,DRV12,DY13,DPW14]

For the first time match heuristic extractors!

<u>Punch line</u>: Difference between Extraction and Key Derivation !

Step1. Identify general class of applications P which work "well" with <u>any</u> high-entropy key R
Interesting in its own right !

□ Step2. Build good condenser: relaxation of extractor producing high-entropy (but non-uniform!) derived key R = h(X)

Unpredictability Applications

13

Sig, Mac, OWF, ... (not Enc, PRF, PRG, ...)

Example: unforgeability for Signatures/Macs
Assume: Pr[A forges with deficiency ≤ ε (= negl)

■ <u>Hope</u>: $Pr[A \text{ forges with his} entropy key] \le \varepsilon'$

 \Box Lemma: for any ε -secule unpredictability appl. P,

$$\mathbb{H}_{\infty}(R) \geq m - d \implies \varepsilon' \leq 2^d \cdot \varepsilon$$

 \Box E.g., random *R* except first bit $0 \Longrightarrow \varepsilon' \le 2\varepsilon$

✓ Step1. Argue any unpredictability applic. P works well with (only) a high-entropy key R □ $\mathbb{H}_{\infty}(R) \ge m - d \Longrightarrow \varepsilon' \le 2^d \cdot \varepsilon$

Step2. Build good condenser: relaxation of extractor producing high-entropy (but non-uniform!) derived key R = h(X)

Randomness Condensers

15

 \Box (k,d, ε)-condenser: given (n, k)-source X, outputs m

bits R " ε -close" to some (m, m-d)-source Y:

$$(\operatorname{Cond}(X; S), S) \approx_{\varepsilon} (Y, S)$$
 and $\mathbb{H}_{\infty}(Y \mid S) \ge m - d$

Cond + Step1
$$\Rightarrow$$
 $\epsilon' \leq (1 + 2^d) \cdot \epsilon$

 $\Box \text{ Extractors: } d = 0 \text{ but only for } k \ge m + 2\log(1/\epsilon)$

$\Box \text{ Our Main Result}: \frac{d}{d} = 1 \text{ with } k = m + \log\log(1/\epsilon) + 4$

I KDF: $log(1/\epsilon)$ -independent hash function works!

Balls and Bins

independence" [CRSW11]

Reduces to simple balls-and-bins game:

- **Throw 2^k balls into 2^m bins**
- Pick a random ball χ improve |S| to O(n log k) using "gradual increase of
- Lose if $|Bin(x)| > 2^d \cdot |$
- $\Box \underline{Goal}: \text{ given } d, m, \varepsilon \Longrightarrow \min \text{ ... Pr[Lose]} \le \varepsilon$
- Easy calculation ⇒ para zters of theorem if throw balls totally independently
- $\Box \underline{Observation}: \log(1/\epsilon) independence suffices!$

Unpredictability Extractors

17

Corollary: provably secure KDF with entropy loss loglog(1/ɛ) + 4 for all unpredictability applications

□ Implicitly built (*k*, ε, ε')-unpredictability extractors: $\Pr[\mathbf{D}(\mathsf{U}_m, \mathsf{S}) = 1] \le \varepsilon \Rightarrow \Pr[\mathbf{D}(\mathsf{UExt}(\mathsf{X};\mathsf{S}), \mathsf{S}) = 1] \le \varepsilon'$

• got $\varepsilon' = 3\varepsilon$ and $k = m + \log\log(1/\varepsilon) + 4$

Example: CBC-MAC, $\varepsilon = 2^{-64}$, m = 128LHL: k = 256; Now: $k = 138 \cong 128$ (RO)

Unpredictability Extractors

18

Corollary: provably secure KDF with entropy loss loglog(1/ɛ) + 4 for all unpredictability applications

□ Implicitly built (*k*, ε, ε')-unpredictability extractors: $\Pr[\mathbf{D}(\mathsf{U}_m, \mathsf{S}) = 1] \le \varepsilon \Rightarrow \Pr[\mathbf{D}(\mathsf{UExt}(\mathsf{X};\mathsf{S}), \mathsf{S}) = 1] \le \varepsilon'$

• got $\varepsilon' = 3\varepsilon$ and $k = m + \log\log(1/\varepsilon) + 4$

 $\Box \text{ More generally, } \varepsilon' = \varepsilon \cdot (1 + \log(1/\varepsilon) \cdot 2^{m-k})$

- E.g., $\varepsilon' = \varepsilon \cdot (1 + \log(1/\varepsilon))$ when k = m
- CBC-MAC: $k = m = 128 \Rightarrow \varepsilon = 2^{-57.9}$ (vs. 2^{-63} RO)

Options for Avoiding RT

20

<u>Route 1</u>: implicitly restrict D by considering special classes of applications P [BDK+11,DRV12,DY13,DPW14]
This paper: L = loglog(1/ɛ) for all <u>unpredictability</u> P
[BDK+11,DY13]: L = log(1/ɛ) for all <u>"square-friendly"</u> P (includes unpred. P, but also CPA enc, weak PRF, ...)

<u>Route 2</u>: efficiently samplable sources X [DGKM12]

Efficient Samplability?

21

- **Theorem** [DPW14]: efficient samplability of X
 - does <u>not</u> help to improve entropy loss below
 - 2log(1/ɛ) for all applications P (RT-bound)
 - Affirmatively resolves "SRT-conjecture" from [DGKM12]
 - $\Box \log(1/\epsilon)$ for all square-friendly applications P
 - □ $loglog(1/\epsilon)$ for all unpredictability applications P

Options for Avoiding RT

22

<u>Route 1</u>: implicitly restrict **D** by considering special classes of applications P [BDK+11,DRV12,DY13,DPW14] **This paper:** $L = loglog(1/\epsilon)$ for all <u>unpredictability</u> P \square [BDK⁺11,DY13]: $L = \log(1/\epsilon)$ for all <u>"square-friendly"</u> P (includes unpred. P, but also CPA enc, weak PRF, ...) ✓ <u>Route 2</u>: efficiently samplable sources X [DGKM12]

Route 3: computat. bounded D (pseudo-randomness)

Computational Assumptions?

23

- □ <u>Theorem</u> [DGKM12, DPW14]: <u>SRT-conjecture</u> ⇒ efficient Ext beating RT-bound for all computationally bounded D ⇒ OWFs exist
 □ How far can we go with OWFs/PRGs/...?
 □ One of the main open problems
- □ <u>Current Best</u> [DY13]: "computational" extractor with entropy loss $2\log(1/\epsilon) - \log(1/\epsilon_{prg})$ □ "Computational" condenser?
 - "Computational" condenser?

- Difference between extraction and KDF
 - □ $loglog(1/\epsilon)$ loss for all unpredictability apps

Summari

•••

 $\mathbf{\tilde{\mathbf{C}}}$

- □ log(1/ε) loss for all square-friendly apps
 - (+ motivation to study "square security")
- Efficient samplability does not help
- Good computational extractors require OWFs
- Main challenge: better "computational" KDFs

Questions?

