KEY DERIVATION
WITHOUT
ENTROPY WASTE

@Q‘: 20

Yevgeniy Dodis

New York University

Joint work with Krzysztof Pietrzak and Daniel Wichs

Key Derivation
2

1 Setting: application P needs m—bit secret key R

7 Theory: pick uniformly random R <— {0,1}"

1 Practice: have "imperfect randomness” X € {0,1}"

physical sources, biometric data, partial key leakage,

extracting from group elements (DH key exchange), ...
71 Need a “bridge”: key derivation function (KDF)
h: {0,1}"— {0,1}" st. R = h(X) is “good” for P

... only assuming X has “minimal entropy” &

Formalizing the Problem Ta‘@

N
0 ldeal Model: pick uniform R <— U as the key

Assume P is c—secure (against certain class of attackers A)

-1 Real Model: use R = h(X) as the key, where

[Real Security € = Ideal Security ¢ }

-1 Goal: minimize £ s.t. P is 2e—secure using R = h(X)
Equivalently, minimize entropy loss L =k — m
(If possible, get information-theoretic security)

Note: we design /1 but must work for any (n, k)-source X

o1 Note: we design /2 but must work for any (7, k)-source X

Old Approach: Extractors

Tool: Randomness Extractor [NZ96].
Input: a weak secret X and a uniformly random seed S.
Output: extracted key R = Ext(X; S).
R is uniformly random, even conditioned on the seed S.
(Ext(X; S), S) = (Uniform, S)
Many uses in complexity theory and cryptography.

Well beyond key derivation (de-randomization, etc.)

extracted key:

Ext —— PR

secret: X

seed: S

Old Approach: Extractors

6
71 Tool: Randomness Extractor [NZ96].

Input: a weak secret X and a uniformly random seed S.
Output: extracted key R = Ext(X; S).
R is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) = (Uniform, S)

0 (k,€)-extractor: given any secret (1,k)-source X,
outputs m secret bits “c—fooling” any distinguisher D:

w &l distance

| Pr[D(Ext(X; S), S)=1]-=Pr[D(U,,S)=1]|<c¢

Extractors as KDFs

@ &
@"m I.llm:A
I i

1 Lemma: for any ¢-secure P needing an m—bit key,

(k,e)-extractor is a KDF yielding security ¢’ < 2¢

o LHL [HILL: universal hash functions are (k,c)-extractors

where

k=m + 2log(1/¢)

-1 Corollary: For any P, can get entropy loss 2log(1/¢)

How Bad is 2log(1/€) Entropy Loss? = ‘? Y

y—ﬂ%

Many sources do not have “extra” 2log(1/¢) bits
Biometrics, physical sources, DH keys on elliptic curves
DH: low &£ = smaller group size = higher efficiency
AES-based P: £ =2°% m =128 = k=256=2m ®
Heuristic extractors have “no entropy loss”: & = m

End Result: practitioners prefer heuristic key

derivation to provable key derivation [DGH* Kra]

Can we provably match it, despite RT-bound?

Extractors as KDFs

E ,@nn \ Lot g

1 Lemma: for any ¢-secure P needing an m—bit key,

(k,e)-extractor is a KDF yielding security ¢’ < 2¢

o LHL [HILL: universal hash functions are (k,c)-extractors
wherelk=m + 2log(1/¢)

-1 Corollary: For any P, can get entropy loss 2log(1/¢)

| RT-bound [rT]: for any extractor, k > m + 2log(1/¢)

entropy loss 2log(1/€) seems necessary &

... Or is it¢

. A
Lz

Side-Stepping RT
o

1 Do we need to derive statististically random R?

0 Yes for one-time pad ®...

0 No for many (most2) other applications P © | this work
/
Series of works “beating” RT [BDK*11,DRV12,DY1 3,DPV<1 4]

For the first time match heuristic extractors!

Punch line: Difference between

Extraction and Key Derivation |

New Approach/Plan of Attack Z&~¢ |
e a Sl i

-1 Step1. Identify general class of applications P
which work “well” with any high-entropy key R

Interesting in its own right !

1 Step2. Build good condenser: relaxation of

extractor producing high-entropy (but non-
uniform!) derived key R = /(X)

Unpredictability Applications

"Massive unpredictablity

1 Sig, Mac, OWEF, ... (not Enc, PRF, PRG, ...) "™

1 Example: unforgeability for Signatures/Macs

Entropy

Assume: Pr[A forges with < ¢ (= negl)

_ deficiency

Hope: Pr[A forges with hi¢ éntropy key] < €’

7 Lemma: for any £-secu.e unpredictability appl. P,

H,(R) =2m—-d) = [¢ <2%¢

E.g., random R except first bit 0 = ¢’ < 2¢

Plan of Attack

¥Step1. Argue any unpredictability applic. P
works well with (only) a high-entropy key R

H R =>2m-—d=g <2%

Step2. Build good condenser: relaxation of

extractor producing high-entropy
(but non-uniform!) derived key R = /(X)

)
THE CONDENSER %

Randomness Condensers | e

@@§

Q
]
'

15|
0 (k,d,e)-condenser: given (1, k)-source X, outputs m

bits R “e—close” to some (m1, m—d)-source Y :

(Cond(X; S), S) =, (¥, S) |land H (Y| S) =2 m —d

Cond + Stepl = &' < (1 +29) - ¢

| Extractors: d = 0 but only for k > m + 2log(l/e) | &

- Our Main Result:|d = 1 with £ =m + loglog(1/¢e) + 4
KDF: log(1/¢)-independent hash function works!

Balls and Bins o i

Reduces to simple balls-and-bins game:

Throw 2% balls into 2™ Icpas

Pick a random ball x Tpne |9 o e [eg) g
using “gradual increase of
Lose if |Bin(x)| > 2¢ -

independence” [CRSW'1]]/
Goal: given d, 7, € = min {Pr[Lose] < &

ers of theorem
pendently

Easy calculation = par
if throw balls totally in

Observation: log(1/¢)-independence suffices!

Unpredictability Extractors

Corollary: provably secure KDF with entropy loss

loglog(1/¢) + 4 for all unpredictability applications

0 Implicitly built (£, €, €")-unpredictability extractors:
Pr[D(U,, S) =1] <& = Pr[D(UExt(X;S), S)=1] < ¢’
" got&’=3¢and k=m + loglog(l/¢)+ 4

Example: CBC-MAC, ¢ = 24, m = 128
LHL: £ =256; Now: k=138 = 128 (RO)

Unpredictability Extractors

-1 Corollary: provably secure KDF with entropy loss

loglog(1/¢) + 4 for all unpredictability applications

0 Implicitly built (£, €, €")-unpredictability extractors:
Pr[D(U,, S) =1] <& = Pr[D(UExt(X;S), S)=1] < ¢’
" got&’=3¢and k=m + loglog(l/¢)+ 4

- More generally, & =¢- (1 + log(1/g) - 2m7K)
E.g., ¢ =¢ - (1 +1og(1/€)) when k=m
CBC-MAC: k=m =128 = g =279 (vs. 23 RO)

Options for Avoiding RT . F
@]

¥ Route 1: implicitly restrict D by considering special

classes of applications P [BDK*11,DRV12,DY13,DPW14]

This paper: L = loglog(1/¢) for all unpredictability P

[BDK™11,DY13]: L = log(1/¢) for all “square-friendly” P

(includes unpred. P, but also CPA enc, weak PREF, ...)

-1 Route 2: efficiently samplable sources X [DGKM1 2]

Efficient Samplability?
.

1 Theorem [DPW14]: efficient samplability of X

does not help to improve entropy loss below

2log(1/¢) for all applications P (RT-bound)

u Affirmatively resolves “SRT-conjecture” from [DGKM1 2]
log(1/¢) for all square-friendly applications P

loglog(1/¢) for all unpredictability applications P

Options for Avoiding RT F
: ;

¥ Route 1: implicitly restrict D by considering special

classes of applications P [BDK*11,DRV12,DY13,DPW14]

This paper: L = loglog(1/¢) for all unpredictability P

[BDK™11,DY13]: L = log(1/¢) for all “square-friendly” P

(includes unpred. P, but also CPA enc, weak PREF, ...)
¥ Route 2: efficiently samplable sources X [DGKM1 2]

1 Route 3: computat. bounded D (pseudo-randomness)

Computational Assumptions? ONE

Theorem [DGKM12 ,DPW14]: -SR—coniecture—=—

efficient Ext beating RT-bound for all
computationally bounded D = OWFs exist

How far can we go with OWFs/PRGs/...2

One of the main open problems

Current Best [DY13]: “computational” extractor

with entropy loss 2log(1/g) — log(1/¢)

“Computational” condenser?

Summary
—

loglog(1/¢) loss for all unpredictability apps Dﬁ

log(1/¢) loss for all square-friendly apps

(+ motivation to study “square security”)
-1 Efficient samplability does not help ®
11 Good computational extractors require OWFs &

7 Main challenge: better “computational” KDFs

Questions?
—

