
Yevgeniy Dodis

New York University

KEY DERIVATION

WITHOUT

ENTROPY WASTE

Joint work with Krzysztof Pietrzak and Daniel Wichs

2

Key Derivation

 Setting: application P needs m–bit secret key R

 Theory: pick uniformly random R {0,1}m

 Practice: have ”imperfect randomness” X {0,1}n

physical sources, biometric data, partial key leakage,

extracting from group elements (DH key exchange), …

 Need a “bridge”: key derivation function (KDF)

h: {0,1}n {0,1}m s.t. R = h(X) is “good” for P

… only assuming X has “minimal entropy” k

3

Formalizing the Problem

 Ideal Model: pick uniform R Um as the key

Assume P is e–secure (against certain class of attackers A)

 Real Model: use R = h(X) as the key, where

min-entropy(X) = H(X) ≥ k (Pr[X = x] 2−𝑘, for all x)

h: {0,1}n {0,1}m is a (possibly probabilistic) KDF

 Goal: minimize k s.t. P is 2e–secure using R = h(X)

 Equivalently, minimize entropy loss L = k m

 (If possible, get information-theoretic security)

Note: we design h but must work for any (n, k)-source X

Real Security e’ Ideal Security e

 Ideal Model: pick uniform R Um as the key

Assume P is e–secure (against certain class of attackers A)

 Real Model: use R = h(X) as the key, where

min-entropy(X) = H(X) ≥ k (Pr[X = x] 2−𝑘, for all x)

h: {0,1}n {0,1}m is a (possibly probabilistic) KDF

 Goal: minimize k s.t. P is 2e–secure using R = h(X)

 Equivalently, minimize entropy loss L = k m

 (If possible, get information-theoretic security)

Note: we design h but must work for any (n, k)-source X

4

Formalizing the Problem

X

h X

Old Approach: Extractors

 Tool: Randomness Extractor [NZ96].

 Input: a weak secret X and a uniformly random seed S.

Output: extracted key R = Ext(X; S).

R is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) ≈ (Uniform, S)

 Many uses in complexity theory and cryptography.

 Well beyond key derivation (de-randomization, etc.)

Ext
secret: X

seed: S

extracted key:

R

5

Old Approach: Extractors

 Tool: Randomness Extractor [NZ96].

 Input: a weak secret X and a uniformly random seed S.

Output: extracted key R = Ext(X; S).

R is uniformly random, even conditioned on the seed S.

(Ext(X; S), S) ≈ (Uniform, S)

 (k,e)-extractor: given any secret (n,k)-source X,

outputs m secret bits “e–fooling” any distinguisher D:

| Pr[D(Ext(X; S), S) =1] – Pr[D(Um, S) =1] | e

6

statistical distance

7

Extractors as KDFs

 Lemma: for any e-secure P needing an m–bit key,

(k,e)-extractor is a KDF yielding security e’ ≤ 2e

 LHL [HILL]: universal hash functions are (k,e)-extractors

where k = m + 2log(1/e)

 Corollary: For any P, can get entropy loss 2log(1/e)

8

How Bad is 2log(1/e) Entropy Loss?

 Many sources do not have “extra” 2log(1/e) bits

Biometrics, physical sources, DH keys on elliptic curves

DH: low k smaller group size higher efficiency

AES-based P: e = 2-64, m = 128 k = 256 = 2m

 Heuristic extractors have “no entropy loss”: k = m

 End Result: practitioners prefer heuristic key

derivation to provable key derivation [DGH+,Kra]

 Can we provably match it, despite RT-bound?

9

Extractors as KDFs

 Lemma: for any e-secure P needing an m–bit key,

(k,e)-extractor is a KDF yielding security e’ ≤ 2e

 LHL [HILL]: universal hash functions are (k,e)-extractors

where k = m + 2log(1/e)

 Corollary: For any P, can get entropy loss 2log(1/e)

 RT-bound [RT]: for any extractor, k m + 2log(1/e)

entropy loss 2log(1/e) seems necessary

… or is it?

11

Side-Stepping RT

 Do we need to derive statististically random R?

 Yes for one-time pad …

 No for many (most?) other applications P !

Series of works “beating” RT [BDK+11,DRV12,DY13,DPW14]

Punch line: Difference between

Extraction and Key Derivation !

this work

For the first time match heuristic extractors!

12

New Approach/Plan of Attack

 Step1. Identify general class of applications P

which work “well” with any high-entropy key R

 Interesting in its own right !

 Step2. Build good condenser: relaxation of

extractor producing high-entropy (but non-

uniform!) derived key R = h(X)

13

Unpredictability Applications

 Sig, Mac, OWF, … (not Enc, PRF, PRG, …)

 Example: unforgeability for Signatures/Macs

Assume: Pr[A forges with uniform key] ≤ e (= negl)

Hope: Pr[A forges with high-entropy key] ≤ e’

 Lemma: for any e-secure unpredictability appl. P,

H(R) ≥ 𝑚 − 𝑑 e’ ≤ 2𝑑e

 E.g., random R except first bit 0 e’ ≤ 2e

Entropy

deficiency

14

Plan of Attack

 Step1. Argue any unpredictability applic. P

works well with (only) a high-entropy key R

 H(R) ≥ 𝑚 − 𝑑 e’ ≤ 2𝑑e

 Step2. Build good condenser: relaxation of

extractor producing high-entropy

(but non-uniform!) derived key R = h(X)

15

Randomness Condensers

 (k,d,e)-condenser: given (n, k)-source X, outputs m

bits R “e–close” to some (m, m−d)-source Y :

(Cond(X; S), S) ≈e (Y, S) and H(Y | S) ≥ m – d

 Cond + Step1 e’ ≤ (1 + 2𝑑) e

 Extractors: d = 0 but only for k m + 2log(1/e)

 Our Main Result: d = 1 with k = m + loglog(1/e) + 4

KDF: log(1/e)-independent hash function works!

random

16

Balls and Bins

 Reduces to simple balls-and-bins game:

 Throw 2𝑘 balls into 2𝑚 bins

 Pick a random ball 𝑥

 Lose if 𝐵𝑖𝑛 𝑥 > 2𝑑 2𝑘−𝑚

Goal: given d, m, e min k s.t. Pr[Lose] e

 Easy calculation parameters of theorem

if throw balls totally independently

Observation: log(1/e)-independence suffices!

improve |S| to O(n log k)

using “gradual increase of

independence” [CRSW11]

17

Unpredictability Extractors

 Corollary: provably secure KDF with entropy loss

loglog(1/e) + 4 for all unpredictability applications

Example: CBC-MAC, e = 2-64, m = 128

LHL: k = 256; Now: k = 138

 Implicitly built (k, e, e’)-unpredictability extractors:

Pr[D(Um, S) =1] e Pr[D(UExt(X;S), S) =1] e’

 got e’ = 3e and k = m + loglog(1/e) + 4

 128 (RO)

18

Unpredictability Extractors

 Corollary: provably secure KDF with entropy loss

loglog(1/e) + 4 for all unpredictability applications

 Implicitly built (k, e, e’)-unpredictability extractors:

Pr[D(Um, S) =1] e Pr[D(UExt(X;S), S) =1] e’

 got e’ = 3e and k = m + loglog(1/e) + 4

 More generally, e’ = e (1 + log(1/e) 2m−k)

 E.g., e’ = e (1 + log(1/e)) when k = m

 CBC-MAC: k = m = 128 e = 2-57.9 (vs. 2-63 RO)

20

Options for Avoiding RT

 Route 1: implicitly restrict D by considering special

classes of applications P [BDK+11,DRV12,DY13,DPW14]

This paper: L = loglog(1/e) for all unpredictability P

 [BDK+11,DY13]: L = log(1/e) for all “square-friendly” P

(includes unpred. P, but also CPA enc, weak PRF, …)

 Route 2: efficiently samplable sources X [DGKM12]

21

Efficient Samplability?

 Theorem [DPW14]: efficient samplability of X

does not help to improve entropy loss below

 2log(1/e) for all applications P (RT-bound)

Affirmatively resolves “SRT-conjecture” from [DGKM12]

 log(1/e) for all square-friendly applications P

 loglog(1/e) for all unpredictability applications P

22

Options for Avoiding RT

 Route 1: implicitly restrict D by considering special

classes of applications P [BDK+11,DRV12,DY13,DPW14]

This paper: L = loglog(1/e) for all unpredictability P

 [BDK+11,DY13]: L = log(1/e) for all “square-friendly” P

(includes unpred. P, but also CPA enc, weak PRF, …)

 Route 2: efficiently samplable sources X [DGKM12]

 Route 3: computat. bounded D (pseudo-randomness)

23

Computational Assumptions?

 Theorem [DGKM12]: SRT-conjecture

efficient Ext beating RT-bound for all

computationally bounded D OWFs exist

How far can we go with OWFs/PRGs/…?

 One of the main open problems

Current Best [DY13]: “computational” extractor

with entropy loss 2log(1/e) log(1/eprg)

 “Computational” condenser?

,DPW14]:

Summary

 Difference between extraction and KDF

 loglog(1/e) loss for all unpredictability apps

 log(1/e) loss for all square-friendly apps

(+ motivation to study “square security”)

 Efficient samplability does not help

 Good computational extractors require OWFs

 Main challenge: better “computational” KDFs

Questions?

